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Functional connectivity (FC) patterns in functional MRI exhibit dy-
namic behavior on the scale of seconds, with rich spatiotemporal
structure and limited sets of whole-brain, quasi-stable FC configu-
rations (FC states) recurring across time and subjects. Based on
previous evidence linking various aspects of cognition to group-
level, minute-to-minute FC changes in localized connections, we
hypothesized that whole-brain FC states may reflect the global,
orchestrated dynamics of cognitive processing on the scale of sec-
onds. To test this hypothesis, subjects were continuously scanned
as they engaged in and transitioned between mental states dic-
tated by tasks. FC states computed within windows as short as
22.5 s permitted robust tracking of cognition in single subjects
with near perfect accuracy. Accuracy dropped markedly for sub-
jects with the lowest task performance. Spatially restricting FC in-
formation decreased accuracy at short time scales, emphasizing
the distributed nature of whole-brain FC dynamics, beyond univar-
iate magnitude changes, as valuable markers of cognition.

fMRI | connectivity dynamics | functional connectivity states |
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Resting state functional MRI (rs-fMRI) focuses on spatial pat-
terns of blood oxygenation level dependent (BOLD) signal

cofluctuations recorded in the absence of externally driven tasks
or stimulation. These patterns, known as functional connectivity
(FC) patterns, are usually computed on the basis of an entire scan
(often >6 min). Their cognitive significance (1) and long term re-
producibility (2) are well established, and preliminary data suggest
that they have potential clinical value (3). However, recent studies
have shown that FC patterns are highly dynamic at shorter tem-
poral scales (4) (i.e., tens of seconds), adding yet another challenge
to developing fMRI-based protocols with sufficient single-subject
specificity and sensitivity to inform clinical decisions.
FC patterns computed with 1- to 2-min portions of a scan can

vary substantially around a mean FC pattern obtained using com-
plete 6- to 20-min scans. This dynamic behavior has been observed
in awake and sleeping humans (5–8), as well as in anesthetized
animals (9, 10). Several studies involving simultaneous fMRI and
electrophysiological recordings have suggested that FC dynamics
may be driven by neurophysiological sources rather than noise
(6, 11, 12). Furthermore, FC dynamics exhibit rich spatiotem-
poral structure. Connections between higher order cognitive
regions are more variable than those between primary sensory-
motor regions (13–15), and a limited set of whole-brain, quasi-
stable FC configurations―known as FC states―reliably recur both
within and across subjects at rest (13, 16).
Given that cognition is supported by highly dynamic brain pro-

cesses, it has been hypothesized that FC states may reflect changes
in ongoing cognitive states during rest (13). Initial task-based
studies have been able to differentiate between a limited set of
mental tasks (17, 18) and arousal levels (19) on the basis of lo-
calized changes in FC at the scale of 45 s to 2 min. However, all
these studies examined only a reduced set of predefined connec-
tions expected to best differentiate states of interest. In doing so,

these studies neglect the highly distributed and parallel nature
of cognitive processing (20, 21) and consciousness itself (22),
thus only partially validating the cognitive significance of FC
states as originally defined: quasi-stable, global representations
of FC across the whole brain.
In the following study, we used a continuous, multitask paradigm

to study the relationship between ongoing cognition and dynamic
changes in FC patterns derived from BOLD measurements at dif-
ferent temporal scales. We use the term “ongoing cognition” to
refer to brain activity that is the result of experimentally con-
strained cognitive processes, in contrast to resting state, which
includes unconstrained ongoing cognition of an unknown, in-
ternally driven nature (23). Although giving subjects freedom to
transition between states at will may better reflect the self-di-
rected nature of cognition during rest, such an experimental
design would lack ground truth regarding the timing and nature
of cognitive states, thus precluding detailed evaluation of their
relationship with FC states. Consequently, our experimental
design uses tasks to control these variables and monitor subject
performance via behavioral responses. This framework provides
the basis for rigorously testing the degree to which FC states
reflect ongoing cognition at short temporal scales and, in that
manner, informs the interpretation of BOLD connectivity dy-
namics during both task and rest.

Significance

Recently, it was shown that functional connectivity patterns ex-
hibit complex spatiotemporal dynamics at the scale of tens of
seconds. Of particular interest is the observation of a limited
set of quasi-stable, whole-brain, recurring configurations—com-
monly referred to as functional connectivity states (FC states)—
hypothesized to reflect the continuous flux of cognitive processes.
Here, to test this hypothesis, subjects were continuously scanned
as they engaged in and transitioned between mental states dic-
tated by tasks. We demonstrate that there is a strong relationship
between FC states and ongoing cognition that permits accurate
tracking of mental states in individual subjects. We also demon-
strate how informative changes in connectivity are not restricted
solely to those regions with sustained elevations in activity during
task performance.
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Participants were scanned continuously for ∼25 min as they en-
gaged and transitioned between four mental tasks: two-back working
memory (memory), numerical computations (math), visual attention
(video), and rest. Subjects engaged in each task for two non-
consecutive 3 min periods (Fig. 1). Responses and response times
were obtained for the three active tasks. For each of 20 subjects,
whole-brain FC patterns were computed for nonoverlapping win-
dows of different durations (range 180 s to 22.5 s) and used to
generate time lines of FC states. In this manuscript, the word FC
state refers to a vector populated with connectivity values (i.e.,
Fisher’s transform of the Pearson’s correlation value) computed
using only the portion of the data inside a given window. Because the
Pearson’s correlation removes the means and divides by the SDs of
the input time series, windowed connectivity matrices computed this
way are less prone to bias by shifts in activity levels across task blocks.
Finally, these FC state time lines were then compared with mental
state time lines defined by the timing of the experimental paradigm
(see Fig. S1 for a detailed depiction of the analysis). We show that
the structure imposed by these task-related demands, or ongoing
cognition, can be recovered from short-term FC state dynamics at
the single-subject level on the scale of tens of seconds with near
perfect accuracy.

Results
Behavioral. Table 1 shows across-subject average values for per-
centage of correct responses (PCorrect), percentage of trials when a
response was required but none was given (PMissing), and reaction
time (RT) for all task blocks. On average, subjects performed much
better on the math and memory tasks (PCorrect > 90%; PMissing <
20%) than they did on the video task (PCorrrect ≈ 67%; PMissing ≈
30%). RTs were on average quite similar across blocks of the
same task. Individualized measures of PCorrect, RT, and PMissing are
reported in Fig. S2. This figure also shows the difference across
same-task blocks for each of the metrics (i.e., ΔPCorrect, ΔRT, and
ΔPMissing), which informs us about performance consistency across
the whole scan. Subjects S05, S12, and S14 had the worst overall
performance in terms of PCorrect (Fig. S2A) and PMissing (Fig. S2E),
being the only ones with PMissing > 25% and PCorrect < 80%. They
were also among those with the highest RTs (Fig. S2C), ΔRT (Fig.
S2D), and ΔPMissing (Fig. S2F). One of them in particular, S12,
showed the highest levels of discrepancy for all three metrics, per-
haps signaling an intermittent loss of concentration/awareness
during the scan. Importantly for our discussion, these three subjects

also had markedly degraded performance in terms of FC state-
based classification (Figs. 2 and 3).

FC-Based Classification. Fig. 2 shows group-level, FC-based clas-
sification results in terms of the adjusted rand index (ARI). The
ARI is a clustering validation metric that quantifies the level of
agreement between a data-driven clustering (e.g., FC states +
k-means) and existing knowledge of the underlying structure of the
data (i.e., window groupings based on mental tasks) while also
correcting for chance (24). Interpretation of the ARI is well
established in the literature (25): ARI < 0.65 signals poor recovery
of the underlying group structure of the data; 0.65 < ARI < 0.8
indicates moderate recovery; 0.8 < ARI < 0.9 indicates good
recovery; and 0.9 < ARI < 1.0 indicates excellent recovery.
Group-level ARI results are reported in Fig. 2 in terms of the
median (white dot), 25–75% percentiles (gray box), and most
extreme data points not considered outliers (dotted whiskers). In
addition, outliers are marked with a (+) symbol in Fig. 2. For
window length (WL) ≥ 30 s, the median ARI equals 1, signaling
that we were able to perfectly group windows based on whole-
brain FC snapshots. For WL = 22.5 s, the median ARI decreases
slightly, but it is still within the excellent recovery range (green).
Finally, only five subjects were marked as outliers with classifi-
cation accuracies well below the rest of the group. Subjects S03
and S08 were outliers only for one of the various WLs, yet their
ARI remained within the good recovery zone. Conversely, sub-
jects S05, S12, and S14 were outliers for several WLs, and their
ARI dropped in the moderate (subject S05) or poor recovery
zone (subjects S12 and S14).
Fig. 3 shows classification results for six representative subjects

at all WLs in the form of “classification staffs” (results for all 14
additional subjects can be found in Figs. S3 and S4). In each
“staff,” the x axis corresponds to time (in units of windows), and
the y axis to FC states. Each time window is represented by a
color-coded bar and a dot. The color of the bar signals the im-
posed mental state (gray, rest; blue, memory; green, math; yel-
low, video). The location of the dot on the y axis signals the FC
state to which that window was assigned. Agreements between
groupings based on mental state and FC state are marked with
black dots, and errors are marked with red dots. In addition, for
each subject, we report two measures of classification success
(classification accuracy and ARI) to the right of the staff. PCorrect,
RT, and PMissing for each task block and subject are reported in
Table S1.
Fig. 3A shows results for subject S01, a representative non-

outlier subject. No classification errors occurred for this subject.
Fig. 3 B–F shows results for the five outliers reported above. Fig.
3B shows results for subject S03, outlier at WL = 30 s, due to two
errors (first rest and seventh video windows). These two errors at
WL = 30 s were sufficient to push the ARI down to the good
recovery zone although accuracy remained above 95%. Two
additional errors occurred for this subject at windows at the edge
of task blocks (transition windows) for WL = 22.5 s. Fig. 3D
shows results for subject S08, outlier at WL = 60 s, due to a
single misclassification (last rest window). One more error oc-
curred on the same rest window for WL = 30 s.
Fig. 3C shows results for subject S05, outlier for WL = 60 s, 45 s,

30 s, and 22.5 s. For all these windows, the ARI fell within the
moderate recovery range. All but one misclassification involved
grouping of rest and memory windows together (red line). This
subject had the largest PMissing for the memory task (along with
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Fig. 1. Experimental paradigm and summary of analysis for multitask scans.

Table 1. Average behavioral measures across all subjects

Memory-B1 Memory-B2 Math-B1 Math-B2 Video-B1 Video-B2

PCorrect, % 91.92 ± 7.20 93.25 ± 6.65 95.69 ± 4.64 91.11 ± 9.30 66.25 ± 18.18 67.19 ± 21.92
PMissing, % 12.75 ± 15.85 18.33 ± 24.27 0.83 ± 1.82 2.50 ± 4.84 30.62 ± 16.95 31.25 ± 21.65
RT, s 0.94 ± 0.37 1.05 ± 0.58 2.31 ± 0.45 2.55 ± 0.51 1.39 ± 0.17 1.37 ± 0.22

B, block.
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subject S14) (Fig. S2E) and had the second worst PCorrect for this
task (Fig. S2A).
Fig. 3F shows results for subject S14, outlier for WL = 45 s, 30 s,

and 22.5 s. At these WLs, all errors but one were related to
confusion with the memory task, mostly (26 of 30) with rest win-
dows (red line). Subject S14’s ARI for WL = 30 s and 22.5 s lies in
the poor recovery zone. Behaviorally, subject S14 had the largest
PMissing (tied with subject S05) for the memory task.
Finally, Fig. 3E shows results for subject S12, outlier for all

window lengths. Subject S12 had the worst classification of the
group, with ARIs in the poor recovery zone for all WLs.
According to all three behavioral metrics, this subject was the most
inconsistent across blocks and was also among the four worst
subjects in terms of task performance. Across all WLs, 70 of 73
misclassifications involved confusion with the video task (red

lines). Subject S12’s performance was low and variable during the
video blocks, as evidenced by having the lowest PCorrect, largest
ΔPMissing and ΔPCorrect, and second largest PMissing and ΔRT for
this task.

FC-Based Classification Accuracy vs. Behavior. Scatter plots of clas-
sification accuracy (ARI) versus each of the six behavioral indices
are shown in Fig. 4 for WL = 22.5 s. In each plot, subjects are
represented as gray circles. A linear fit to the data is shown (dotted
line), and correlation values and their significance (P value) are
reported. We found significant correlations between ARI and all
behavioral metrics for this window length, as well as for WL = 30 s,
45 s, and 60 s. When the three worst performers (subjects S05, S12,
and S14) were excluded from this analysis, the correlations were no
longer significant although this negative result may be partly due to
ceiling effects on the ARI (all remaining subjects had ARI ≥ 0.88
and 9 of 17 had ARI = 1). This observation suggests that large
deviations in task performance are required to produce substantial
errors in FC classification.

Contribution of Task-Specific Regions to Classification. To determine
the overlap between the connectivity changes driving the FC-based
classification and the locations of activation-induced changes in
BOLD magnitude, we sorted regions of interest (ROIs) according
to how well they differentiated the tasks in terms of activation
levels (see SI Methods for details). We subsequently attempted
FC-based classification using progressively smaller sets of ROIs. In
one analysis, we removed the most task-discriminative ROIs first.
In a second parallel analysis, we removed ROIs in the opposite
order (least task-discriminative first).
Fig. S5A shows activation maps for the contrasts between the

three active tasks and rest. Although maps do differ, in all instances,
activation foci were present in visual cortex, anterior insula, inferior
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parietal lobule, thalamus, and both medial and lateral portions of
the premotor cortex. Fig. S5B shows contrast maps between the
active tasks. A more limited set of regions is observed for these
higher order contrasts, with differences concentrated mainly in oc-
cipital cortex, posterior thalamus, and inferior frontal regions. The
largest differences occurred for the memory vs. video contrast. Fig.
S5C shows all 157 ROIs color-coded according to their activation-
based discriminative power. Most discriminative ROIs are depicted
in warmer colors (yellow to red); cooler colors (cyan to dark blue)
are used for the least discriminative. All regions from the high order
contrasts (Fig. S5B) and many regions from rest contrast (Fig. S5A)
appear colored in green or warmer colors (high ranks) in the map.
Fig. 5 shows results after selective removal of ROIs for two

representative windows (WL = 60 s, WL = 22.5 s). Independent
of WL or exclusion order, classification accuracy decreases
monotonically as the number of discarded ROIs increases. The
rate of decrease in accuracy is faster when most discriminative
ROIs are removed first, yet removal of a limited set of least
discriminative ROIs can also degrade classification. This last
observation is most apparent for shorter WLs. Classification
remained above poor levels despite removal of 50% of ROIs.
For WL = 60 s, classification was excellent even with the removal
of 40% of the ROIs that best discriminate the tasks. This result
suggests that an FC state is better described by the state of wide
spread connections across the brain, rather than by the consid-
erably smaller set of connections between regions whose overall
activity changes the most across the tasks under study.

Influence of Analytical Decisions on the Results. Knowledge about
ongoing mental states allowed us to evaluate our methods for
FC-based classification. We tested the effect of atlas size, level of
dimensionality reduction, and clustering algorithm. We per-
formed FC classification with seven versions of the Craddock
atlas (26) (range: 30–500 ROIs), five levels of dimensionality
reduction (keep all, 97.5%, 95%, 90%, or 75% of the variance),
and two clustering algorithms (k-means and hierarchical clus-
tering). We found that methodological decisions can heavily in-
fluence classification results, especially for the shorter WLs. In
particular we found the following: (i) When selecting the atlas, it
is best to use a larger set of small ROIs rather than a smaller set
of large ROIs; (ii) discarding a small amount of variability from
the correlation matrix via principal component analysis (PCA)
can help the clustering algorithm substantially, yet removing too
much variance can be damaging; and (iii) k-means outperformed
hierarchical clustering in all scenarios. Fig. S6 shows how ARI
changed across all these conditions in detail.

Discussion
In this study, we scanned a group of subjects continuously as they
engaged in and transitioned between a series of well-defined tasks
that created distinct mental states. We demonstrate that there is a
strong relationship between FC states and ongoing cognition that
can be detected in individual subjects for windows ranging in du-
ration from 180 s to 22.5 s. Moreover, for shorter windows (WL ≤
60 s), we found significant correlations between classification per-
formance and behavioral metrics of performance and variability.
Finally, by selectively excluding ROIs from the classification based
on their level of task-specific activation, we also show that in-
formative changes in connectivity are widely distributed across the
brain and not restricted to the few regions with sustained eleva-
tions in activity during the tasks. Importantly, this last point im-
plies that inferences based solely on maps of relative magnitude
changes may be missing valuable information embedded in a wider
distribution of connectivity patterns that change without con-
comitant magnitude changes, thereby leaving our understanding
of specific tasks and states incomplete. These results fit with prior
studies showing how system-restricted (i.e., not whole-brain)
connectivity-based classification of motor (27) and emotional
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vs. ΔRT. (E) ARI vs. PMissing. (F) ARI vs. ΔPMissing.
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task (28) content outperforms activity-based classification, and
extend this finding to whole-brain FC patterns. Overall, we
show that short-term fluctuations in whole-brain fMRI con-
nectivity patterns can be reliably used to track ongoing cognition,
on an individual subject basis, despite the noisy and indirect nature
of BOLD signals as a marker of neuronal activity.
Our results extend previous attempts at tracking cognition on

the basis of short-term fMRI FC patterns (17–19, 29–31) in
several ways: (i) We report higher accuracy for shorter windows,
which suggests that FC states follow cognition at much shorter
temporal scales than previously reported; (ii) we do so in in-
dividual subjects without a priori selection of informative con-
nections or training datasets, which makes this approach suitable
for studying a wide range of cognitive states and for single-subject
clinical applications; (iii) we demonstrate that FC states are most
identifiable when defined as global, whole-brain phenomena; and
(iv) we report additional analyses aimed to devise the best methods
for tracking cognition using FC states.
Best results from prior studies showed classification accuracies

around 80% for durations of 60 s or more (17, 19). For shorter
windows, when reported, accuracy dropped quickly. Here, we re-
port accuracies well above 80% for windows as short as 22.5 s (Fig.
3), which approaches the upper limit of temporal scales (256 ms to
16 s) for which EEG microstate (32) sequences show scale-free
behavior (33). Previous research already had limited success
matching temporal sequences of EEG microstates to rs-fMRI
networks, despite the contrast between their dynamic and sta-
tionary definitions (34–36). In addition to the better conceptual
match between microstates and FC states as quasi-stable, global
brain phenomena that are in flux over short time periods, our
results show that FC states also share the functional utility of
microstates in terms of tracking ongoing cognition at behaviorally
relevant time scales. These findings suggest that examining these
two phenomena in conjunction may help elucidate the relationship
between dynamics in fMRI and electrophysiological signals.
The original observation of FC states by Allen et al. (13) relied

on whole-brain connectivity data and k-means, a data-mining
technique that does not require a preexisting training dataset.
However, all attempts at validating the concept of FC states as a
correlate of cognition (17–19, 29, 37) have relied upon supervised
techniques that required a training dataset and/or some a priori
selection of connections based on the mental states under scrutiny,
both of which limit the generalizability of those approaches. To our
knowledge, ours is the first study to show a strong correlation be-
tween FC and mental states without the need of any such priors.
Unsupervised approaches such as k-means are preferable because
they are independent of mental state and suitable for single-subject
applications, but they have their own set of limitations. First, most
of them require a priori selection of the number of states (k). We
were able to develop robust classification procedures based on the
ground truth for k established by the experimental paradigm, but
obtaining the correct number of FC states in an unbiased, data-
driven manner is an important challenge for the field. Second,
unsupervised classification techniques simply group similar objects
(e.g., whole-brain FC patterns) into sets. They cannot assign any
label or meaning (e.g., mental computations) to the discovered
groups. In other words, unsupervised methods can reveal when
subjects are engaged in the same mental state, but not what state
that is. Fortunately, once proven that FC states consistently repre-
sent cognitive states within subjects, one could envision a second
step in which detected FC states are compared against dictionaries
of FC patterns for which a label does exist. For such a dual-step
approach to work, we first need to understand the conditions under
which FC states faithfully represent cognitive states, particularly
across subjects and for internally, self-induced mental states such as
those present in rest. This topic is not directly addressed in this
work, but previous studies have demonstrated successful group-
level FC-based classification of more loosely controlled cognitive
states without sensory stimulation or motor responses (17, 37).
Although FC/cognitive state dictionaries are not yet available,
equivalent dictionaries for activity-based patterns are being

constructed today (38). We believe that better characteriza-
tion of across-subject consistency in FC states, combined with
parallel efforts to develop such FC-based dictionaries, may
provide the means to track ongoing cognition during rest.
Several factors may have contributed to obtaining such high

classification results for shorter temporal scales than previously
reported. First, data were acquired on a high-field scanner, which
translates into better signal-to-noise ratio. Second, an adaptive
high-pass filtering scheme was used to avoid spurious fluctua-
tions in correlation values (39). In fact, when such filtering is not
in place, classification notably degraded for the shorter windows
(Fig. S6D). Third, we used a finer grained parcellation of the
brain than previous studies (200 ROIs vs. ∼100 ROIs). Rean-
alysis of the data with versions of the Craddock atlas (26) ranging
in number of ROIs from 30 to 500 (Fig. S6A) suggests that best
results are obtained with a minimum of 200 ROIs. Fourth, we
used distinctive tasks in terms of their cognitive load, response
patterns, and difficulty, which may have enhanced our ability to
discern between cognitive states. Fifth, most previous studies
used supervised classification algorithms and evaluated their
results using cross-validation across subjects and/or runs. Here,
because each subject was analyzed separately with unsupervised
methods, an external evaluation metric (ARI) was used to
evaluate each subject individually. Differences in the evaluation
framework may also contribute to some differences in classifi-
cation results. Finally, considering whole-brain connectivity
patterns as opposed to just a subset of connections may have also
provided an additional boost in accuracy for the shortest win-
dows. Results from the “selective exclusion of ROIs” analyses
suggest that valuable information for tracking cognition is spa-
tially distributed across the whole brain. Particularly at shorter
time windows, removing a limited set of regions/connections can
cause a substantial reduction in classification accuracy (Fig. 5,
Bottom Plot), even if those connections do not show sustained
task activations. These findings reemphasize the original defini-
tion of FC states as whole-brain phenomena (13, 18) and fit
current theories of consciousness that characterize mental states
in terms of global access to widely distributed information (40)
and highlight the irreducible nature of information integrated
across large-scale networks (41).
Additional analyses were conducted to understand what drives

the classification. First, to ensure that across-task changes in
activation levels or signal variability were not responsible, we
attempted classification based on average signal levels and SDs
of ROI representative time series. Second, we phase-randomized
each ROI time series before computing FC states to ensure that
time-varying relationships were needed for accurate classifica-
tion. Third, we also randomized FC state features (i.e., scrambled
the strength of individual connections) to ensure classification was
not driven simply by overall across-task changes in connectivity
levels. For all these analyses, the ARI dropped into the poor re-
covery zone for all WLs in all subjects, except for intensity-based
classification with WL = 180 s, for which the ARI fell into the
moderate recovery zone but was still well below FC-based classi-
fication rates (Fig. S7 B, C, E, and F). Finally, to determine
whether univariate task activations were necessary for classifica-
tion, we regressed out the task effects as a nuisance variable in
preprocessing and found that the ARI remained excellent (Fig.
S7D). These control analyses suggest that classification is driven by
orchestrated changes in connectivity across tasks for all window
lengths, especially for WL < 180 s, and that first-order activations
were neither necessary nor sufficient for robust classification at
short time scales.
Additionally, a series of analyses were conducted to evaluate

our preprocessing pipeline (Fig. S6). Our results suggest using a
finer-grained atlas (more smaller ROIs is better than fewer larger
ROIs), a conservative approach to discarding variance (keeping
97.5% of variance produced the best results), and k-means over
hierarchical clustering. Most importantly, these results suggest
that methodological decisions can influence the strength of mea-
sured relationships between FC and mental states, meaning that
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caution should be exercised when interpreting results in situations
with no ground truth (e.g., resting state).
The brain is an inherently dynamic and distributed system. Al-

though valuable information can be obtained by studying its stable
characteristics (e.g., anatomical or stationary rs-fMRI networks), a
full understanding will require exploration of its dynamic behavior
at different spatial and temporal scales. The strong correspon-
dence between FC states and mental states reported here suggests
that the detailed study of FC states may provide novel insights into
system-level behaviors of the human brain. Moreover, the rich
structure in these dynamics (e.g., number of states, dwell-time,
etc.) may be a more sensitive marker for mental conditions than
metrics about stable characteristics of the brain (16). Preliminary
research has already revealed differences in dwell time between
controls and both Alzheimer’s disease patients (42) and schizo-
phrenics (43). In two recent reviews on resting state dynamics
(4, 16), it was acknowledged that a better understanding of the
relationship between BOLD dynamics and behavior was still
needed. The work summarized here represents an important step
in that direction by showing how fluctuations in FC states, when
computed appropriately, are directly related to ongoing cognition

in individual subjects. We believe that future research on FC states
in more experimental conditions and populations will help reveal
the most cognitively and clinically meaningful ways to observe,
describe, and quantify the dynamics of FC states.

Methods
Twenty-two participants were scanned continuously as they engaged in and
transitioned between four mental tasks after giving informed consent in
compliancewith a protocol approved by the Institutional Review Board of the
National Institute of Mental Health in Bethesda, MD. After data pre-
processing, whole-brain FC patterns (based on Pearson’s correlationmatrices)
were computed for nonoverlapping windows of different durations and
used to generate time lines of FC states. These FC-state time lines were then
compared with mental-state time lines defined by the timing of the exper-
imental paradigm. Detailed methods are provided in SI Methods.
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SI Methods
Subjects. Twenty-two subjects (13 females; age, 27 ± 5 y old)
completed these experiments after giving informed consent in
compliance with a protocol approved by the Institutional Review
Board of the National Institute of Mental Health in Bethesda,
MD. The data from two subjects were discarded from the analysis
due to excessive spatial distortions in the functional time series.

Experimental Paradigms. Subjects were scanned under two different
experimental paradigms. The first paradigm consisted of a con-
tinuous ∼25-min-long scan during which subjects performed and
transitioned between four different cognitive tasks: namely, rest,
simple math, a two-back working memory task, and a visual at-
tention task. We refer to this paradigm as the continuous multi-
task paradigm. The second paradigm consisted of a series of three
separate scans (one per active task: math, memory, and visual
attention) using a “20 s on/40 s off” block design paradigm. We
refer to these three scans as functional localizer paradigms.
Continuous multitask paradigm. Subjects were scanned continuously
for 25 min and 24 s while performing four different tasks (Fig. 1A).
Each task appeared for two separate 180-s blocks, with each task
block being preceded by a 12-s instruction period. The paradigm
was the same for all subjects. The order of task blocks was ran-
domized so that each task was always preceded and followed by a
different task. The four tasks were as follows:

• Rest: Subjects were instructed to fixate on a crosshair in the
center of the screen and let their mind wander.

• Math: Subjects were presented with simple arithmetic involv-
ing three numbers between 1 and 10 and two operands (only
addition and subtraction). These problems were presented at
the top of the screen (e.g., “(2 + 3) − 1 =”), and two answers
(one correct and one incorrect) were presented at the bottom
of the screen. Subjects used an MRI-compatible response box
to select the correct response. Operations remained on the
screen for 4 s, and a blank screen appeared for 1 s between
successive trials. This timing resulted in a total of 36 operations
per 180-s block. Problems were different across all trials, and
the left/right position of correct responses was randomized.

• Memory: Subjects were presented with a continuous sequence
of individual geometric shapes (triangles, squares, rhomboids,
circles, and pentagons) that appeared at the center of the
screen every 3 s (shapes appeared on the screen for 2.6 s,
followed by a blank screen for 400 ms). Subjects were instructed
to press a button on an MRI-compatible response box when-
ever the shape currently on the screen was the same as two
shapes before in the sequence. The sequence was designed such
that a response was required at least every seven shapes. Dif-
ferent sequences were presented during the two 180-s blocks.

• Visual attention (video): Subjects were instructed to watch a
video of a real fish tank. The video shows different types of fish
swimming in and out of view from a single, stationary point of
view. Subjects were instructed to monitor the fish for a red
crosshair target that would appear at random times over a single
fish for a duration of 200 ms, and to use an MRI-compatible
response box to signal whether the target appeared on top of a
clown fish, or any other type of fish. A total of 16 targets ap-
peared during each 180-s block, and the same video was used for
both blocks. For one subject, the video during the second visual
attention block flickered. The subject’s subjective report and
behavioral data confirmed that the subject was still able to per-
form the task at a comparable level.

Both responses and reaction times were recorded for the math,
memory, and video tasks. Subjects were instructed to respond as
quickly and accurately as possible, and only once per question,
regardless of potential errors. To get subjects accustomed to all of
the tasks, subjects were presented with a shorter training version
of the paradigm outside the scanner with a different list of trials
for all tasks. Before doing the training, subjects were instructed to
use this opportunity to come up with a cognitive strategy for each
of the tasks. Subjects were advised about the importance of
keeping the cognitive strategy consistent within and across ex-
perimental blocks. All subjects confirmed that they had come up
with strategies for each task before entering the scanner.
Functional localizer scans. Three additional functional scans were
acquired in a subset of 18 subjects after the continuous multitask
scan. All three functional localizer scans had the same organi-
zation. An initial 18-s rest period was followed by five repetitions
of a 21-s task block followed by a 39-s rest block. An additional
10.5 s of rest were added at the end of each scan, resulting in
328.5-s runs. During the rest periods, subjects were instructed to
remain still and focus their attention on a fixation crosshair on the
center of the screen. During the task block periods, subjects
performed one of the three active tasks previously described (e.g.,
math, memory, or visual attention). The same task was performed
in all five blocks of a scan. Therefore, three different scans, one
per task, were acquired in each subject.

Data Acquisition. Imaging was performed on a Siemens 7 TeslaMRI
scanner equipped with a 32-element receive coil (Nova Medical).
Functional runs were obtained using a gradient recalled, single shot,
echo planar imaging (gre-EPI) sequence {repetition time [TR], 1.5 s;
echo time [TE], 25 ms; flip angle [FA], 50°; 36 interleaved slices;
slice thickness, 2 mm; in-plane resolution, 2 × 2 mm; field-of-
view [FOV], 192 mm; right-to-left phase encoding, integrated
parallel imaging technique [iPAT] [generalized autocalibrating
partially parallel acquisition (GRAPPA)], 2}. To accommodate
differences in head size, acquisition angle and slice spacing (0.1–
0.4 mm) were varied across subjects. We acquired a total of 1,017
volumes while subjects performed the continuous-task paradigm,
and we acquired 219 volumes during each functional localizer
paradigm. For one subject, functional data were collected with a
slightly different set of parameters [TR, 1.5 s; TE, 25 ms; FA,
70°; 1,021 volumes; 35 oblique, interleaved slices; slice thickness,
2 mm with 0.3-mm gap; in-plane resolution, 1.4 × 1.4 mm; field-
of-view (FOV), 200 mm; anterior-to-posterior phase encoding,
iPAT (GRAPPA), 4].
In addition, T1-weighted magnetization-prepared rapid

gradient-echo and proton density (PD) sequences were acquired
for presentation and alignment purposes (axial prescription,
number of slices per slab, 192; slice thickness, 1 mm; square FOV,
256 mm; image matrix, 256 × 256).

Behavioral Data Analysis.Here, we describe computations of percent
correct responses, percent missing responses, and average reaction
times for each of the three active tasks.
Memory task. Percent correct responses for the memory blocks was
computed as follows:

PCorrect, Mem = 100x

�
NR −NMissing

�
  +  

�
NNR −NMisfires

�

 NR   +  NNR 
[S1]

where NNR is the number of trials that required no response,
NMisfires is the number of times a subject pressed the button for
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a trial that required no answer, NR is the number of trials that
required a response, NMissing is the number of times a subject did
not press the button when he/she was required to do so.
Percent trials missing responses for the memory blocks was

computed as follows:

PMissing = 100x
NMissing

NR
[S2]

Average reaction time for memory blocks was computed using
reaction times for all trials in which subjects responded. However,
this information did not take into account trials requiring a re-
sponse but missing one (e.g., if subject went to sleep). To take
into account such inconsistencies in performance, which may in-
dicate lapses in cognitive processing that would result in poor clas-
sification of FC states, trials missing responses were penalized
by counting them as a reaction time equal to the duration of a
trial (3 s) in the average reaction time. In this manner, the average
reaction time for subjects that may have fallen asleep during a
block will increase in parallel with the number of missing
responses.
Math task. Percent correct responses for math blocks (PCorrect,Math)
was computed as the number of correct answers divided by the
total number of trials. Trials with no response counted as incor-
rect answers.
Percent trials missing responses for the math blocks was

computed as the number of trials for which there was no response
divided by the total number of trials in a block (36 trials).
Using the same reasoning used to calculate average reaction

time in the memory task, average reaction time for math blocks
was computed by averaging together reaction times from trials in
which subjects responded and penalty reaction times equal to the
duration of a trial (5 s) from trials missing responses.
Visual attention/video task. Percent correct responses for the video
task was computed as follows:

PCorrect,Vid = 100x
NCR

NTrials
[S3]

where NCR is the number of correct responses (crosshair appeared
on screen and subject selected the correct fish type) and NTrials is
the number of times a crosshair appeared in the screen.
Percent trials missing responses for the video blocks was

computed as the number of trials for which there was no response
divided by the total number of trials in a block (16 trials).
Using the same reasoning used to calculate average reaction

time in the memory task, average reaction time for video blocks
was computed by averaging together reaction times from trials in
which subjects responded and penalty reaction times from trials
missing responses that were equal to the average plus two SDs of
the reaction time across all subjects during the video task (1.82 s).

Continuous-Task fMRI Data Processing. Fig. S1C contains a flow-
chart that summarizes all of the main processing steps in our
connectivity-based decoding pipeline. Details about the im-
plementation of each of these processing steps are pro-
vided below.
Preprocessing. The Analysis of Functional NeuroImages (AFNI)
software (44) was used for data preprocessing. For individual EPI
runs, preprocessing included the following: (i) despiking (AFNI
program 3dDespike); (ii) physiological noise correction (in all
but four subjects), including regressors for the retrospective
image correction (RETROICOR) (45), respiration volume per
time (RVT) (46), and heart rate (47) models; (iii) slice time
correction (AFNI program 3dTshift); and (iv) head motion cor-
rection (AFNI program 3dvolreg). In addition, mean, slow signal
trends modeled with legendre polynomials up to seventh order,

signal from eroded local white matter, signal from the lateral
ventricles (cerebrospinal fluid), motion estimates, and the first
derivatives of motion were regressed out in a single regression
step (AFNI program 3dTfitter) to account for potential hardware
instabilities and remaining physiological noise [anatomy-based
image correction (ANATICOR)] (48). Finally, time series were
converted to signal percent change and bandpass filtered. The
high end of the bandpass filter was set to 0.18 Hz. The lower end
of the bandpass filter was chosen to match the inverse of the
window duration used in subsequent analyses. Consequently, a
different frequency band was used per window duration: for 180-
s window analysis, data were filtered to 0.006–0.18 Hz; for 90-s
windows, to 0.012–0.18 Hz; for 60-s windows, to 0.017–0.18 Hz;
for 45-s windows, to 0.023–0.18 Hz; for 30-s windows, to 0.034–
0.18 Hz; and, finally, for 22.5-s windows, to 0.045–0.18 Hz. This
step is necessary to avoid inducing spurious fluctuations in cor-
relation calculations in successive steps (39). Window-specific
time series were then spatially smoothed [full width at half
maximum (FWHM), 4 mm; AFNI program 3dBlurInMask).
Spatial transformation matrices to go from EPI native space to

Montreal Neurological Institute (MNI) space were computed for
all subjects using the magnetization-prepared rapid gradient echo
(MP-RAGE) and PD scans with AFNI program align_epi_anat.py
following procedures previously described in ref. 49. These ma-
trices were then used to bring publicly available regions of in-
terest (ROI) definitions (see Brain Parcellation below for more
details) from MNI space into each subject’s EPI native space.
Brain parcellation. Two hundred ROIs covering the whole brain
were obtained from the human brain atlas provided by Craddock
et al. (26). These ROIs are spatially contiguous, similar in size,
and represent functionally homogeneous brain regions. Publicly
available atlases were transformed fromMNI to subject space for
each individual. Any ROIs that did not contain at least 10 voxels
in all of a subject’s scanning field of view (FOV) were removed
from subsequent analyses. This process resulted in the exclusion
of 43 ROIs located primarily in cerebellar, inferior temporal,
and orbitofrontal regions.
For comparison purposes, we also conducted the classification

using the 30, 50, 70, 100, 150, and 500 ROI atlases provided by
Craddock et al. (26). Results for these alternative analyses pipeline
are shown in Fig. S6A.
ROI time series extraction. For each ROI, a representative time series
consisting of the principal singular vector was obtained using the
AFNI program 3dmaskSVD. Voxels with a temporal SD greater
than 7 were discarded to minimize contributions from large
vasculature.
Dimensionality reduction. To reduce the dimensionality of the input
feature space before the clustering/classification step, we used
principal component analysis (PCA) and kept all necessary
components to account for 97.5% of the variance. On average,
this procedure permitted us to reduce the dimensionality of the
input feature space from 12,246 to 2,556. Those numbers cor-
respond to the number of unique pairwise connections associated
with a 157 × 157 connectivity matrix (before the PCA) and a 72 ×
72 matrix (after the PCA step), respectively.
For comparison purposes, we also conducted the classification

after applying PCA but keeping all components (no dimensionality
reduction), and also after applying PCA and keeping smaller
amounts of variance (95%, 90%, and 75%). Results for these al-
ternative analysis pipelines are shown in Fig. S6B.
Windowed connectivity snapshots. Remaining PCA time series were
subsequently segmented in time using nonoverlapping windows of
180, 90, 60, 45, 30, and 22.5 s that match the experimental
paradigm timing. Instruction periods were discarded. For each
window, we computed all pairwise correlations between PCA
time series and put them in vector form. We then transformed
these Pearson’s correlation values into Z-scores using the Fisher
transformation. We refer to the Fisher-transformed vectors as
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connectivity snapshots throughout this manuscript. They can be
regarded as a picture of covariance across the brain in a given
window of time during the experiment. These connectivity
snapshots are the input to the subsequent classification step.
Connectivity-based classification/clustering. Connectivity snapshots
were input to the k-means clustering algorithm in MATLAB. This
algorithm sorts the connectivity snapshots into k groups by maxi-
mizing within-cluster similarity and between-cluster dissimilarity,
using correlation as a distance metric between snapshots. We se-
lected k = 4 clusters for all analyses, given that subjects were asked
to engage in four different cognitive tasks during the scan. The
algorithm ran with a maximum of 1,000 iterations to ensure con-
vergence to the optimal clustering solution. This analysis was
performed separately for each subject and window length. No in-
formation about the timing of each snapshot relative to the para-
digm or tasks was provided to the clustering algorithm.
Quantitative clustering validation. To quantitatively evaluate how
successful we were at recovering the periods during which subjects
were performing the same mental task, we used the adjusted rand
index (ARI) (24). As an external clustering validation technique,
its computation requires knowledge about the real structure of
the data (i.e., the real groupings of elements into clusters that
should be recovered by the clustering algorithm). In our particular
case, this ground truth comes from the experimental paradigm
(e.g., what task subjects were engaged in during a given window).
The ARI ranges from 1 to below 0, with 1.00 indicating perfect
recovery of the known clusters, 0 indicating chance level clus-
tering performance, and < 0 indicating worse than chance.
Ranges established in the literature describe an ARI > 0.9 as
excellent, 0.9 > ARI > 0.8 as good, 0.8 > ARI > 0.65 as mod-
erate, and ARI < 0.65 as poor recovery, respectively (25). In this
manner, the ARI enables us to evaluate the agreement between
grouping of windows based on mental state and those based on
connectivity snapshots, while also adjusting for potential agree-
ments just by chance.
TheARI was calculated separately for each subject and window

length. ARI values were then averaged across subjects to provide
summary results at each window length.
Correlation with behavioral metrics.To determine whether clustering
results were contingent on consistent task performance, we
computed three behavioral indices based on responses recorded
inside the scanner. Each index was computed separately for each
subject. For each metric, we also calculated the discrepancy
between task blocks. The three indices are as follows:

• Average percent correct responses [PCorrect]: Percentage of
correct responses averaged across all six active task blocks.

• Average percent missing responses [PMissing]: Percentage of
trials that required a response for which subjects did not pro-
vide one. This metric includes all math trials, memory trials
that required a button press, and each appearance of the
target crosshair during the visual attention task.

• Average reaction time [RT]: Average reaction times across all
six active task blocks were averaged into one representa-
tive value.

• Across-block discrepancies [ΔPCorrect, ΔPMissing, and ΔRT]:
For each index, metrics were calculated as described above
within each task block. For each metric, the differences be-
tween blocks of the same task were found and then averaged
to arrive at a single value representing how each index varied
across task blocks for each subject.

We plotted each of the six behavioral indices versus the ARI for
each window length. We then tested for significant correlations
between the ARI and each of these behavioral indices using
MATLAB function corrcoef.
Classification under control conditions. To confirm that classification
results were driven primarily by meaningful changes in connec-

tivity across the brain, we conducted a series of four additional
analyses, in which the input to the classification algorithm was
altered as follows:

• ROI intensity-based features: Each window was characterized
by the average intensity of each ROI representative time series
within that window. Consequently, in this analysis, the dimen-
sionality of the feature vectors was 157 (the number of ROIs).
No dimensionality reduction step is performed in this analysis.
The purpose of this analysis is to rule out the possibility that
high classification accuracy results primarily from differences in
sustained changes in activity levels across tasks. If connectivity
changes are the primary source of information driving the clas-
sification algorithm, this analysis should lead to poor recovery
levels of the original mental states.

• ROI variability-based features: Each window was characterized
by the SD across time of each ROI representative time series
within that window. As in the previous case, the dimensionality
of the feature vectors equals the number of ROIs, and no di-
mensionality reduction step was performed. The goal of this
analysis is to rule out the possibility that high classification
accuracy results primarily from differences in the amount of
signal fluctuations across tasks. Once more, if connectivity
changes are the primary source of information driving the clas-
sification algorithm, this analysis should lead to poor recovery
levels of the original mental states.

• Connectivity-based classification after task regression: Three
regressors corresponding to each task were generated by con-
volving the hemodynamic response with boxcar functions with
ones during the two task blocks and zeros elsewhere. These
task regressors were included as nuisance regressors in the
preprocessing step when slow trends, white matter, ventricle,
and motion signals were regressed out of the data. The rest of
the analysis was the same as in the main experiment.

• Randomization of connectivity snapshots: The order of the
elements in the connectivity snapshots was randomized inde-
pendently for each window entering the analysis. After this
step, a given position in a connectivity snapshot no longer
corresponds to connectivity between the same two PCA com-
ponents across all windows. Because the temporal evolution
of connections across snapshots is lost, this analysis should
lead to poor recovery of the original mental states.

• ROI time series phase randomization: We phase randomized the
ROI representative time series before the dimensionality reduc-
tion step. Phase randomization produces surrogate time series
with identical autoregressive properties, yet the precise timing of
signal fluctuations is destroyed. Because correlations depend
heavily on phase alignment between time series, this analysis
should lead to poor recovery of the original mental states.

Results from these analyses are presented in Fig. S7.

Functional Localizer Scan Processing. Functional localizer scans were
also processed with the AFNI software (44). Preprocessing steps for
each functional scan included the following: (i) despiking (AFNI
program 3dDespike); (ii) slice time correction (AFNI program
3dTshift); (iii) estimation of head motion parameters (AFNI pro-
gram 3dvolreg); (iv) head motion correction and transformation
into MNI space through a single interpolation step (AFNI pro-
grams align_epi_anat.py and 3dAllineate); and (v) spatial smoothing
(FWHM, 4 mm; AFNI program 3dBlurInMask). Individual subject
levels of activation were subsequently computed separately for
each individual localizer scan using AFNI program 3dDeconvolve.
Head motion estimates and their first derivative were incorporated
into the analysis as covariates.
To generate group activation maps, we input individual subject

activation levels for all three tasks into a single two-way, mixed-
effects ANOVA [factor A, task, fixed; factor B, subject, random].

Gonzalez-Castillo et al. www.pnas.org/cgi/content/short/1501242112 3 of 11

www.pnas.org/cgi/content/short/1501242112


Using AFNI program 3dANOVA2, we computed statistical
maps of activation for the following contrasts: (i) math vs. rest,
(ii) memory vs. rest, (iii) video vs. rest, (iv) math vs. memory,
(v) math vs. video, and (vi) memory vs. video. In addition, we
also computed a map of F statistics (F map) for factor A, the
task effect.

Contribution of task-specific regions to classification.The purpose of
these analyses was to evaluate the spatial distribution and com-
pactness of the information driving the classification algorithm. In
particular, we wanted to evaluate whether or not connectivity
levels in areas outside those identified as active during the tasks by
traditional univariate analyses were providing valuable in-
formation to the classification algorithm. For this purpose, we
first ranked ROIs according to the F map of task effect obtained
from the functional localizer scans. We then performed classi-
fication using a decreasing number of ROIs. ROIs were removed
in two opposite ways as described below.

Ranking of ROIs in relationship to task set. For each of the 157 ROIs
entering the final steps of the analysis, we computed the average F
statistic across all voxels in the ROI. We then ranked all 157
ROIs according to this average F value. In this manner, ROIs
were ranked according to the effect size for the task factor. In
other words, ROIs were ranked according to how well they dif-
ferentiated the tasks based on activity levels.
Leave-out-high-F-ROIs analysis. Here, we attempted classification
with a variable number of ROIs. The number of ROIs entering
the analysis ranged from 157 (all ROIs) to only 10, in decrements
of 10 ROIs. ROIs with the highest ranks (highest average F
statistic) were removed first. This analysis was repeated for all
window lengths used in the original analysis, and dimensionality
was reduced to keep 97.5% of the variance.
Leave-out-low-F-ROIs analysis. This analysis is equivalent to the one
described above, except that ROIs with the lowest ranks (lowest
average F statistic) were removed first.
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Fig. S1. Detailed schematic of experimental paradigm and analysis pipeline. (A) Timing of experimental paradigm for the continuous multitask experiments,
as well as descriptions of the visuals presented to the subjects during each task. (B) Detailed depiction of how window-based FC connectivity patterns entering
the classification analysis were computed. (C) Step-by-step diagram of the analysis pipeline used for the multitask paradigm. Data collected as subjects en-
gaged in and transition between the different tasks were first preprocessed. We then extracted representative time series for the ROIs. These whole-length
representative time series entered a PCA analysis used to reduce the dimensionality of the data. Selected PCA time series were then used to construct window-
based connectivity patterns that entered the final clustering step. Groupings of windows based on connectivity patterns were finally compared against
groupings of windows based on the mental task being performed.
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Fig. S2. Single-subject behavioral results. (A) Percentage of correct responses (PCorrect). (B) Discrepancy in PCorrect across blocks of the same task (a.b.s.t.). (C)
Reaction time (RT). (D) Discrepancy in RT a.b.s.t. (E) Percentage of trials with missing responses (PMissing). (F) Discrepancy in PMissing a.b.s.t. In all panels, each
subject is represented by four bars: transparent bar, overall value across all tasks; blue, memory; green, math; yellow, video. Subjects are sorted according to
the panel’s specific metric. Outliers for more than one WL are marked in red.
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Fig. S3. Individual subject classification results (part 1). Classification results for nonoutlier subjects 2 (A), 4 (B), 6 (C), 7 (D), 9 (E), 10 (F), 11 (G), and 13 (H) are shown here. For each subject, we show classification results for WL = 180 s, 90 s, 45 s, 60 s, 30 s, and 22.5 s in the form of classification staffs.
Correctly classified windows are marked with black dots whereas incorrectly classified windows are marked in red. To the right of the classification staffs, we report quantitative measures of classification in terms of classification accuracy and adjusted rand index (ARI). Below the classification staffs, we report
values of percent correct responses, percent of missing trials, and response time for each active task block.
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Fig. S4. Individual subject classification results (part 2). Classification results for the remaining nonoutlier subjects: 15 (A), 16 (B), 17 (C), 18 (D), 19 (E), and 20 (F). The organization of results within each panel is the same as in Fig. S3.
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Fig. S5. Localizer scan analyses. (A) Low order contrast maps for all active tasks (memory vs. rest; math vs. rest; and video vs. rest). Maps are thresholded at
PFDR < 0.05. (B) High order contrast maps (task vs. task) for all possible active task pairs (memory vs. math; video vs. math; and video vs. memory) also
thresholded at PFDR < 0.05. (C) Maps of ROIs ranked according to their activity-based discriminatory power across tasks, as determined by the F statistic for the
task vs. task contrasts. Cooler colors are used for ROIs with the highest rank (lowest F and lowest discriminative power across tasks) whereas warmer colors are
used for the ROIs with the lowest rank (highest F and highest discriminative power across tasks)
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Fig. S6. Group-level classification results for additional analyses with different atlases, levels of kept variance, clustering algorithms, and band-pass filtering criteria. In all panels, the
combination of parameters reported in the main analysis is highlighted with a gray background. Bars represent average ARI across subjects; error bars represent SE. (A) Average group-level
ARI for all window lengths when the number of ROIs in the atlas changes. Results are shown for versions of the Craddock atlas (26) with 30, 50, 70, 100, 150, 200 and 500 ROIs. (B) Average group-level
ARI for all window lengths for the 200 ROI atlas when different levels of variance are kept in the PCA step (100%, 97.5%, 95%, 90%, and 75%). (C) Average group-level ARI for all window lengths for
the 200 ROI atlas for two different clustering algorithms: k-means and hierarchical clustering. (D) Average group-level ARI for all window lengths for the 200 ROI atlas for two different band-pass filtering
criteria: adaptive filtering based on WL and same filtering for all WLs.
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Table S1. Behavioral metrics for the subjects reported in Fig. 4

Subject Memory-B1 Memory-B2 Math-B1 Math-B2 Video-B1 Video-B2

Subject 1
PCorrect, % 93.33 68.75 88.89 96.67 86.11 100
PMissing, % 0 31.25 2.78 0 2.78 0
RT, s 0.51 1.26 2.79 0.43 2.79 0.89

Subject 3
PCorrect, % 96.67 62.50 94.44 98.33 100 75
PMissing, % 8.33 37.50 0 0 0 25
RT, s 0.76 1.50 1.89 0.56 1.99 1.46

Subject 5
PCorrect, % 81.67 18.75 91.67 81.67 66.67 31.25
PMissing, % 40 68.74 0 66.67 13.89 68.75
RT, s 1.51 1.62 3.40 2.19 3.98 1.70

Subject 8
PCorrect, % 96.67 62.50 91.67 95 86.11 87.50
PMissing, % 6.67 37.50 5.56 16.67 2.78 12.50
RT, s 0.59 1.39 2.37 0.82 2.70 1.11

Subject 12
PCorrect, % 98.33 68.75 100 90 80.56 18.75
PMissing, % 0 31.25 0 25 16.67 81.25
RT, s 0.87 1.31 2.30 1.29 3.09 1.64

Subject 14
PCorrect, % 86.67 50 88.89 85 88.89 25
PMissing, % 40 43.75 2.78 66.67 2.78 68.75
RT, s 1.56 1.55 2.82 2.23 2.99 1.70
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