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BRAIN CONNECTIVITY

Task-free MRI predicts individual
differences in brain activity during
task performance
I. Tavor,1,2 O. Parker Jones,1 R. B. Mars,1,3 S. M. Smith,1 T. E. Behrens,1,4 S. Jbabdi1*

When asked to perform the same task, different individuals exhibit markedly different
patterns of brain activity. This variability is often attributed to volatile factors, such as task
strategy or compliance.We propose that individual differences in brain responses are, to a
large degree, inherent to the brain and can be predicted from task-independent
measurements collected at rest. Using a large set of task conditions, spanning several
behavioral domains, we train a simple model that relates task-independent measurements
to task activity and evaluate the model by predicting task activation maps for unseen
subjects using magnetic resonance imaging. Our model can accurately predict individual
differences in brain activity and highlights a coupling between brain connectivity and
function that can be captured at the level of individual subjects.

W
e all differ in howwe perceive, think, and
act. Our brains also differ in how they
solve tasks. Understanding these indi-
vidual differences in brain activity is an
important goal in neuroscience, as it pro-

vides a route for linking brain and behavior.
Often, individual differences in brain activity

induced by an experimental task are attributed to
two possible factors. First, they may be accounted
for by differences in gross brainmorphology. The
vastmajority of brain-imaging studies rely on the
spatial alignment of different brains (registration)

to account for between-subject discrepancies in
gross anatomy (1). Second, subjects may use dif-
ferent strategies or cognitive processes that in-
volve different brain circuits. Psychologists design
their tasks with great care to limit this source of
variability. Nevertheless, individual variations
are seen in all behavioral domains (2–6). These
between-subject differences are often treated as
“noise” in imaging studies and discarded through
the process of averaging individual responses (7).
Indeed, it is thought that such individual differ-
ences are mainly explained by volatile factors re-
lated to the behavior.
We investigated the possibility that individual

differences in brain activation are inherent fea-
tures of individuals and, to a large degree, inde-
pendent of volatile factors.We explored the extent
to which individual differences in task-evoked
brain activity can be predicted by differences in
the functional connectivity of the brain, acquired
in a magnetic resonance imaging (MRI) scanner
while the subjects are at rest and not performing

any explicit task.We aimed to predict several task-
evokedactivitymapsmatching individual subject’s
maps in multiple behavioral domains based on a
single task-free scan (i.e., unconstrained cognition
during rest, with no explicit experimental task)
of any given subject.
We designed a set of regression-based models

that use task-independent features to predict in-
dividual task-evokedresponses. Following thehypo-
thesis that functional differentiation in the brain
can be understood in terms of the underlying
long-range brain connections and interactions
(8, 9), we used predictors based on functional con-
nectivity at rest (10). Brain networks, extracted
from resting-state data sets, qualitatively resem-
ble task-evoked networks at the group level (11).
We therefore hypothesized that, using functional
connectivity at rest, we could predict individual
variations in task responses.We also used predic-
tors encoding individual brain morphology (gross
structure) andmicrostructure to yield a total of
107 predictors [seeMaterials andMethods in sup-
plementarymaterials (SM)]. All of our predictors
were based on imaging subjects at rest and were
independent of any given task. The model was
trained to map between the predictors and task
activations in a cohort of subjects for each task,
and subsequently, the trainedmodel was applied
to out-of-sample (unseen) subjects to predict their
task activations (a leave-one-out approach, see
Materials andMethods in SM for details). Through-
out, we focused on predicting task activations on
the cortex, although the approach can easily be
extended to incorporate subcortical gray matter.
Our data were a subset (98 subjects) of the

Human Connectome Project (HCP) database
(12). HCP data were chosen for their inclusion of
resting-state measurements, diffusion-weighted
MRI, and structural MRI, as well as task-evoked
data spanning several behavioral domains. We
could therefore use the same set of task-free data
to test predictions of several different tasks. The
HCP task data include seven behavioral domains,
and each task set comprises several statistical
maps pertaining to different aspects of each task
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Fig. 1. Predicting individual variations in task maps. Figure shows actual and predicted thresholded task maps in three subjects and four different task
contrasts. The model is able to capture striking variations between subjects in the shape, topology, and extent of their activation maps. Predictions and
comparisons with actual maps for all behavioral domains and more subjects are shown in figs. S1 to S3 and movies S1 to S7.

Fig. 2. Specificity of the individual predictions. A subject’s predicted map
is more similar to the subject’s actual map than to the rest of the subjects.
(A) Predicted maps (zoomed on the right frontal lobe) of the MATH-STORY
contrast from the LANGUAGE task of three subjects are overlapped with their
actual activation maps (top row). We also overlap the subjects’ predictions
with the activation map of the median subject (bottom row). Blue represents
actual activation, red is the predicted activation, and yellow is the overlap.The
maximum overlap is obtained when comparing a given subject’s prediction
with their own actual map. (B) Pearson correlation matrix between actual (col-
umns) and predicted activations (rows). The correlation matrix is noticeably
diagonal-dominant, which indicates that, on average, the model prediction for

any given subject is more similar to the subject’s own map than to other sub-
jects’ maps.This is also shown as a histogram plot, where the extradiagonal
elements of the correlation matrix (subject X versus subject Y) are compared
with the diagonal elements (subject X versus subject X).The vertical dashed
line corresponds to the median of the correlation coefficients along the
diagonal. (C) Correlation matrices and histograms for six additional behavioral
domains.When we normalized the rows and columns of the correlation matrices
(which removes the mean and accounts for higher variability in actual than
in predicted maps), the diagonal-dominance is even more prominent. In all
cases, a Kolmogorov-Smirnov test between the two distributions (self versus
other) gives a highly significant difference (P < 10−10).
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[all tasks and derived parametric maps are de-
scribed in (13)]. A total of 47 independent task
maps (z scores) were available for each subject
(see Materials and Methods in SM).
We aimed to predict not how subjects activate

on average in a given task but how they differ
(from each other) in their activation patterns. This
aspect of the model is illustrated (Fig. 1) in four
different task conditions (maps thresholded as
described in Materials andMethods). The model
could predict qualitative differences between
subjects, in terms of shape, position, size, and to-
pography of activations. Similar individual vari-
ations predicted across more subjects and all
behavioral domains used by the HCP are shown
in figs. S1 to S3 and movies S1 to S7. The model
could precisely predict individual task variations
across all behavioral domains, on the basis of a
single task-free data set. To get an impression
of how similar our predictions are to the actual
task maps, we overlapped the predictions for
three subjects with their actual activation maps
(Fig. 2A) for the contrast MATH-STORY of the
LANGUAGE task. For comparison,we also overlap-
ped the same subjects with the actual activation
mapof a canonical (median) subject. Themaximum

overlap was obtained when comparing a given
subject’s prediction with their actual map. This
was despite our use of a leave-one-out approach:
The predictive model for subject X had not seen
the activation map of subject X during train-
ing, but it had seen themaps of all other subjects.
Nevertheless, the prediction was more similar to
the map it had not seen (subject X) than to the
maps it had seen (all but subject X). The model
did not learn what the activations for a given task
looked like, but rather it learned how tomap from
the features (resting-state connectivity and mor-
phology) to the task maps in individual subjects.
To quantitatively assess the performance of

the model, we estimated the spatial correlation
between the (unthresholded) predictions and ac-
tual maps for all pairs of subjects (Fig. 2, B and C).
Each entry in the matrix is the Pearson correla-
tion between the taskmap of one subject and the
predicted map of another (off-diagonal) or the
same (on-diagonal) subject. The correlationmatrix
is noticeably diagonal-dominant, which indicates
that, on average, the model prediction for any
given subject is more similar to the subject’s own
map than to other subjects’ maps (see also the
histograms shown in Fig. 2, B and C, comparing

on-diagonal with off-diagonal entries). Normal-
izing rows and columns of the correlationmatrix
(which removes the overallmean correlation and
accounts for the fact that the actual maps are
more variable than the predicted maps) shows
the diagonal-dominance evenmore clearly (see also
figs. S4 to S6, in which we show the same results
for all contrast maps). The diagonal-dominance
is apparent for all tasks and contrast maps, with
the exception of one contrast map (GAMBLING
REWARD). The reason is that activations for this
contrast are restricted to subcortical gray matter,
whereas our model only makes predictions for
the cortex. This result, i.e., the diagonal dominance
of the spatial correlation matrix, is nontrivial
considering that our leave-one-out procedure
ensures that, whenever a model is applied to
predict a given subject, it has never seen that
subject’s task map during training. Yet, the pre-
diction matches that subject’s task data better
than the subjects that it has seen during training.
Themodel’s ability to generalize beyond the train-
ing subjects has important implications. It can
predict activations in individuals for which there
are no available task data (e.g., patients who can-
not perform the task).

218 8 APRIL 2016 • VOL 352 ISSUE 6282 sciencemag.org SCIENCE

Fig. 3. Capturing qualitative and quantitative interindividual differences. (A) Variations in location, shape, and topology are predicted by themodel (contrast:
LANGUAGEMATH-STORY). (B) Peak Z scores were calculated for each hemisphere to examine how well themodel can predict the amount of activation for each
subject. A lateralization index (difference between right and left peak activation levels) is then calculated for each subject for both predicted and actual data and is
shown as red and blue bars, respectively (LANGUAGE task).Themodel is able to predict individual subject’s lateralization index for both contrasts, including the case
where the majority of the subjects are left-lateralized. Statistical tests: MATH-STORY [correlation coefficient (r) = 0.47, P < 10−5], STORY-MATH (r = 0.48, P < 10−6).
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Themodel can precisely capture interindividual
variability (table S3). There are different types of
such variations. Functional brain areas in individ-
ual subjects can greatly vary in size, location, and
shape (14). Primary visual cortex, for instance, can
vary (across different subjects) by a factor of two
or more in surface area (15). Such variability still
allows one-to-one mapping of brain areas across
subjects, provided that individual areas can be
mapped in individual subjects. But another type
of variation is topological variability, which for
example means that different subjects may have
different patterns of activity with no obvious one-
to-onecorrespondencebetweensubjects. Both types
of variability (shape or size versus topological) can
be captured by this model (Fig. 3A). Note that
topological variability cannot be accounted for
using spatial alignment between subjects, and
thus, comparing or averaging subjects’ activations
when they have different topologies is an open
problem. The fact that we can predict such vari-
ability from task-free data may enable new strat-
egies formatching brain networks, as opposed to
brain areas, across subjects.
Our model can also make predictions on the

distribution of activity across different systems,
such as in the case of hemispheric lateralization.
Lateralization of function is seen commonly in the
domain of language (16) but also in attentional
processing (17). Our model can predict such dif-
ferences across individuals in a language task, as

shown in Fig. 3B. We estimated a lateralization
index defined as the difference between right
hemisphere and left hemisphere peak Z (aver-
aged over a 10-mm radius sphere around the
predicted peak) from the predictions and the ac-
tual data. The model is able to precisely predict
an individual subject’s lateralization index. We
also predicted two different contrasts from the
same task (MATH-STORY and STORY-MATH),
where the former tends to show an approxi-
mately equal distribution among left- and right-
lateralized individuals, and the latter shows more
left-lateralized subjects. The model can capture
the lateralized language trend, even for the mi-
nority of right-lateralized subjects, despite the fact
that, for the STORY-MATH contrast, it has been
trained on subjects the majority of whom are
left-lateralized.
The model could also predict atypical activa-

tion patterns. In Fig. 4, we show in five different
behavioral domains examples of subjects that ei-
ther do or do not conform to the pattern seen in
the average subject. The model predicted activa-
tions in regions that were not activated on average.
Conversely, themodel correctly predicted the lack
of activations in regions that were activated on
average.
Overall, a simple set of models trained to learn

a mapping between task-free and task-evoked
maps could be used to predict individual differ-
ences in activation maps accurately across a

wide range of behavioral domains. The predicted
maps matched even large individual variations
in the spatial layout of brain activity, including
position, shape, size, and topology of functional
activations (e.g., whether the activity is localized
or spread out, or whether it consists of a single
region or multiple subregions). The model could
also predict individual differences in the amount
of activation in a given task from a task-free
data set.
The model mainly used resting-state connec-

tivity in addition to a few structural features cap-
turing local morphology and microstructure
(see Materials andMethods in SM). On average
across all tasks, all features participated in the
predictions except for subcortical connectivity
features (excluding the cerebellum—see figs. S7
and S8). Although the structural features were
exploited by the model (fig. S7), removing them
did not affect the performance of the model (fig.
S9), and using a model purely based on structural
features abolishes interindividual variability in the
predictions (fig. S10). This suggests that resting-
state connectivity alone is sufficient to predict
individual variability in task maps, independent-
ly from variations of morphology as captured by
our handful of structural features. It is, however,
possible that additional anatomical variability
may also be indirectly captured by the resting-
state data.
Why can we predict task-evoked activity from

resting-state data? A goodmatch between resting-
state networks and task networks at the group
level has been shown before (11, 18), where it has
been argued that functional networks are conti-
nuously interacting with each other at rest, with
the same functional hierarchy that is seen during
action and cognition. Our model provides an ex-
plicit mapping from resting-state data to task
maps that corroborates this assumption, but it is
important to consider alternative explanations of
our result. Intersubject alignment may be sub-
optimal when using anatomy alone. Our model is
therefore possibly accounting for functional mis-
alignment between subjects (19). However, the
model not only tracks variation in the position
and shape of functional areas but also captures
variations in the topology of the brain networks
activated in individual subjects and can predict
activations of atypical subjects. Therefore, it is
unlikely that the standard approach of aligning
subjects while preserving the brain topology
will be able to fix these types of misalignments.
Our model can make quantitative predictions, in
terms of the amount of activity that individual sub-
jects display during a task. Such predictions are
unlikely to arise frommisalignment considerations.
Resting-state datamay provide ameans for “calibra-
tion” of the blood oxygen–level–dependent (BOLD)
signal (20). However, our predictors are based on
measures of connectivity rather than raw BOLD
signal strength per se [although signal-to-noise
may still affect functional connectivity at rest (21)].
Determiningwhat information in the resting-state
signal is driving our predictions will be important
for understanding its nature and potential. Because
all the predictors that were used in this study are

SCIENCE sciencemag.org 8 APRIL 2016 • VOL 352 ISSUE 6282 219

Fig. 4. Predictions in atypical subjects.The figure demonstrates the ability of our prediction model to
detect intersubject variability when subjects differ from the group-averaged activation. In each row, the
group activation for each behavioral domain is shown on the left, and the actual and predicted activations
for two subjects are shown on the right. In each row, we show activations and predictions for one subject
(A),whose activation is similar to the group activation, and another (B)who differs from it, as shown by the
black circles.Themodel can capture the presence of clusters that are not active in the group (rows 1,4, and
5), as well as the absence of clusters that are active in the group (rows 2 and 3). Note that subjects A andB
are not the same pair of subjects across behavioral domains.
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based on scans acquired at rest, our model is
blind to different strategies that are chosen by the
participants in performing a given task. We refer
to these features as “inherent,” butwe acknowledge
that these can be “structurally inherent” (related
to brain organization and connectivity) or “func-
tionally inherent” (related to the cognitive state of
subjects during the resting-state scan).
The idea that brain connectivity can predict

activation has previously been reported for dif-
ferentmodalities (22, 23), where diffusionMRI trac-
tography was used (24) to measure connectivity.
This study was limited to a number of visual
contrasts. More recently, resting-state connectivity
has been shown to be predictive of subjects’
identity, in a way similar to a fingerprint (25).
Rather than simply identifying subjects, our goal
was to predict the entire layout of brain activity
for each subject. Moreover, we also aim to pre-
dict such layout of activity in a number of dif-
ferent cognitive domains, from a single task-free
scan, including in subjects that show patterns of
activation that are different fromthegroupaverage
(perhapsmost strikingly in right-lateralized subjects
when the majority of training subjects are left-
lateralized).
There are important practical implications of

the proposed framework in basic research and
translational neuroscience. It provides a method
for inferring multiple individualized functional
localizers based on a single resting-state scan.
Such a tool could be used to investigate in detail
the response profiles of localized brain regions
without the need to acquire often time-consuming
task localizers. Such a tool, if generalizable be-
yond the young, healthy population that makes
up the HCP database, could be used to inves-
tigate functional regions in subjects who can-
not perform tasks, such as infants or paralyzed
patients.
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Durably reducing transphobia:
A field experiment on
door-to-door canvassing
David Broockman1* and Joshua Kalla2

Existing research depicts intergroup prejudices as deeply ingrained, requiring intense
intervention to lastingly reduce. Here, we show that a single approximately 10-minute
conversation encouraging actively taking the perspective of others can markedly
reduce prejudice for at least 3 months.We illustrate this potential with a door-to-door
canvassing intervention in South Florida targeting antitransgender prejudice. Despite
declines in homophobia, transphobia remains pervasive. For the intervention, 56
canvassers went door to door encouraging active perspective-taking with 501 voters
at voters’ doorsteps. A randomized trial found that these conversations substantially
reduced transphobia, with decreases greater than Americans’ average decrease
in homophobia from 1998 to 2012. These effects persisted for 3 months, and
both transgender and nontransgender canvassers were effective. The intervention
also increased support for a nondiscrimination law, even after exposing
voters to counterarguments.

I
ntergroup prejudice, defined broadly as neg-
ative attitudes about an outgroup, is a root
cause of numerous adverse social, political,
and health outcomes (1–3). Influential theo-
ries depict intergroup prejudices as deeply

ingrained during childhood and highly resistant
to change thereafter (4–6). Consistent with these
theories, empirical research has found that du-
rably reducing prejudice is challenging. Mass
media interventions and other brief stimuli usu-
ally fail to reduce prejudiced attitudes (7) or have
only temporary effects (8); lasting change ap-

pears to require intense intervention overmonths
(9, 10). Rare are studies demonstrating prejudice-
reduction interventions relatively brief in dura-
tion yet proven to have lasting effects (4).
Theories of active processing, however, suggest

a method for even brief interventions to durably
change attitudes. A recurring finding of labora-
tory studies is that brief messages can durably
change individuals’ attitudes when individuals
engage in active, effortful, processing (known as
“System 2” processing) of those messages (11).
These studies, conducted on other topics, raise
the possibility that brief interventions encour-
aging active consideration of counter-prejudicial
thoughts could produce lasting changes in attitudes
towardanoutgroup.Perspective-taking, “imagining
the world from another’s vantage point,” is one
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and S. Jbabdi (April 7, 2016) 
I. Tavor, O. Parker Jones, R. B. Mars, S. M. Smith, T. E. Behrens
during task performance
Task-free MRI predicts individual differences in brain activity

 
Editor's Summary

 
 
 

, this issue p. 216Science
during task-based fMRI.
marker. Resting-state functional connectivity thus already contains the repertoire that is then expressed
cognitive paradigms. This suggests that individual differences in many cognitive tasks are a stable trait 
were not performing any explicit task predicted differences in fMRI activation across a range of
(fMRI) data from the Human Connectome Project. Brain activity in the ''resting'' state when subjects 

 applied computational models to functional magnetic resonance imaginget al.brain activity? Tavor 
We all differ in how we perceive, think, and act. What drives individual differences in evoked

Every brain is different
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