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The topological architecture of brain connectivity has been well-characterized by graph

theory based analysis. However, previous studies have primarily built brain graphs based

on a single modality of brain imaging data. Here we develop a framework to construct

multi-modal brain graphs using concurrent EEG-fMRI data which are simultaneously

collected during eyes open (EO) and eyes closed (EC) resting states. FMRI data are

decomposed into independent components with associated time courses by group

independent component analysis (ICA). EEG time series are segmented, and then

spectral power time courses are computed and averaged within 5 frequency bands

(delta; theta; alpha; beta; low gamma). EEG-fMRI brain graphs, with EEG electrodes

and fMRI brain components serving as nodes, are built by computing correlations within

and between fMRI ICA time courses and EEG spectral power time courses. Dynamic

EEG-fMRI graphs are built using a sliding window method, versus static ones treating

the entire time course as stationary. In global level, static graph measures and properties

of dynamic graph measures are different across frequency bands and are mainly showing

higher values in eyes closed than eyes open. Nodal level graph measures of a few brain

components are also showing higher values during eyes closed in specific frequency

bands. Overall, these findings incorporate fMRI spatial localization and EEG frequency

information which could not be obtained by examining only one modality. This work

provides a new approach to examine EEG-fMRI associations within a graph theoretic

framework with potential application to many topics.
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INTRODUCTION

Graph theory-based analysis is a powerful technique to characterize the architecture of human
brain networks (Avena-Koenigsberger et al., 2014; Pessoa, 2014). Graph metrics can quantitatively
describe the topological properties of brain connectivity (Klimm et al., 2014). Previous studies that
applied network science and graph theory based analysis to brain imaging data have reported
“economical” small-world organization of connectivity, which reflects an economic balance
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between network cost and network efficiency (Bullmore and
Sporns, 2012; Avena-Koenigsberger et al., 2014). The brain
connectome shows modular and rich club organization with sets
of hub regions that are crucial for efficient neuronal signaling
and communication (van den Heuvel and Sporns, 2013b; Senden
et al., 2014). Further studies show that the graph metrics
and network structures of brain connectivity are altered in
brain disorders (Collin et al., 2014; Crossley et al., 2014; Deco
and Kringelbach, 2014; Hong et al., 2014; Korgaonkar et al.,
2014; van den Heuvel and Fornito, 2014; Fornito and Bullmore,
2015a,b; Fornito et al., 2015; Gong and He, 2015; Wheeler
et al., 2015). However, most of these studies have built the brain
graphs with a single modality of brain imaging data. Additional
insights of brain connectivity may thus be obtained by combining
information frommultiple modalities (Sui et al., 2012; Reid et al.,
2016).

Different imaging techniques are sensitive to different aspects
of brain dynamics. For example, functional magnetic resonance
imaging (fMRI) measures the highly localized hemodynamic
response throughout the brain, with a good spatial resolution
(about 2–3mm) but relatively poor temporal resolution.
Electroencephalography (EEG) measures cortical electrical
activity with a much higher temporal resolution, but its poor
spatial resolution precludes precise anatomical identification of
underlying neural sources. FMRI and EEG therefore represent
complementary imaging signals, and combining concurrently
collected data is a particularly useful way to examine brain
dynamics over a broad range of spatial and temporal scales
(Menon and Crottaz-Herbette, 2005; Herrmann and Debener,
2008; Eichele et al., 2009; Rosenkranz and Lemieux, 2010; Wu
et al., 2010; Lei et al., 2011; Laufs, 2012; Bridwell et al., 2013;
Mulert, 2013).

For coupling concurrent EEG-fMRI data, a popular approach
is to analyze correlations between fMRI voxel time-series and
EEG spectral power fluctuations (Valdes-Sosa et al., 2009; Rosa
et al., 2010; Jorge et al., 2014). For example, it has been
observed that low frequency EEG connectivity appears to best
resemble fMRI connectivity (Deligianni et al., 2014). Brain
connectivity between different regions detected by fMRI is
associated with activity within different frequency bands of the
EEG signal (Tagliazucchi et al., 2012; Chang et al., 2013; Liu et al.,
2014). These findings provide electrophysiological signatures of
functional brain connectivity identified in fMRI data (Mantini
et al., 2007; Meir-Hasson et al., 2014). In this study, we make
a further step to investigate topological organization of multi-
modal EEG-fMRI brain connectivity.

Dynamic connectivity over time is an important feature in
functional brain networks (Hutchison et al., 2013a,b; Li et al.,
2013, 2014; Calhoun et al., 2014; Stephen et al., 2014; Yang
et al., 2014), and dynamic connectivity patterns have been widely
studied with fMRI (Allen et al., 2014; Rashid et al., 2014; Yu
et al., 2015). Graph theory based analysis has been successfully
implemented to assess dynamics during cognitive tasks or during
rest (Doron et al., 2012; Bassett et al., 2013; Cocchi et al.,
2013; Betzel et al., 2014; Cole et al., 2014; Dwyer et al., 2014;
Hermundstad et al., 2014; Zalesky et al., 2014; Davison et al.,
2015; Liang et al., 2016). A few recent studies even examined

the relationships between dynamic fMRI connectivity and EEG
signals (Tagliazucchi et al., 2012; Chang et al., 2013). However, the
graph properties of dynamic brain networks with multi-modal
nodes are largely unknown.

The aim of this study is to explore graph properties
of concurrent EEG-fMRI multi-modal brain connectivity.
Static and dynamic EEG-fMRI brain graphs are built using
concurrently collected data from 25 healthy subjects during
eyes open and eyes closed. Graph nodes are represented by
EEG electrodes and fMRI components identified using group
independent component analysis (ICA; Calhoun et al., 2008).
Graph edges are represented by correlations between fMRI
time courses and/or the EEG spectral power time courses of
five frequency bands (delta, theta, alpha, beta, low gamma;
for details, see the Methods Section below). The findings
characterize changes within graphical properties of connectivity
across different states (eyes open vs. eyes closed), while
incorporating the high spatial resolution of fMRI (by estimating
nodal graph measures of specific brain regions) and the high
temporal resolution of EEG (i.e., we integrate fluctuations of
fMRI brain regions with EEG frequencies within a graph-
theoretic framework). In addition to the different spatial and
temporal resolutions, different aspects of neural activity are also
integrated between the two modalities, since EEG is sensitive
to synchronous cortical synaptic potentials, and BOLD fMRI is
sensitive to BOLD oxygenation changes that follow increased
post-synaptic metabolism (see Bayram et al., 2011; Bridwell and
Calhoun, 2014). This work develops a novel framework to build
multi-modal brain graphs, demonstrating associations between
EEG and fMRI within a graphical theoretical framework.

METHODS

Participants
Twenty-five healthy subjects (age: 29 ± 8; 8 females) were
recruited via advertisements at the University of New Mexico
and by word-of-mouth. Each individual had normal or corrected
to normal vision and hearing. Prior to inclusion in the study,
participants were screened to ensure they were free from DSM-
IV Axis I or Axis II psychopathology [assessed using the SCID
(First et al., 1995)] and to ensure that there was no history of
neurological disease. All participants provided informed written
consent at the Mind Research Network, and were compensated
for their participation. The experiment design and simultaneous
acquisition details were described in our previous study (Wu
et al., 2010).

Experimental Design
Simultaneous EEG-fMRI data were recorded while individuals
rested first with their eyes closed (8.5min), and then with their
eyes open (8.5min). Individuals were instructed to relax, lie still,
and remain awake for the duration of each recording.

EEG Acquisition
EEG was recorded with a 32-channel BrainAmp MR-compatible
system (Brainproducts, Munich, Germany) and a BrainCap
electrode cap (Falk Minow Services, Herrsching-Breitbrunn,
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Germany). The Ag/AgCI electrodes were placed according to the
international 10–20 system. Electrocardiogram (ECG) and eye
movement (EOG) signals were recorded in separate channels,
reducing the number of scalp electrodes to 30. The reference
channel was placed at FCz. The impedance of each electrode was
kept lower than 5 K� using conductive and abrasive electrode
paste. The EEG signals were sampled at 5 KHz. To avoid temporal
jitter, the EEG amplifier and fMRI were synchronized using an
in-house device.

fMRI Acquisition
Functional MRI brain images were acquired with a Siemens
Sonata (Siemens, Malvern PA) scanner at 1.5 T by means of a
T2∗-weighted echo planar imaging sequence with the following
parameters: repeat time (TR) = 2 s, echo time (TE) = 39ms,
field of view = 224mm, acquisition matrix = 64 × 64, flip angle
= 80◦, voxel size = 3.5 × 3.5 × 3mm, gap = 1mm, 27 slices,
ascending acquisition. FMRI scans consisted of 256 volumes for
each condition (eyes open and eyes close).

EEG Processing
EEG data were preprocessed in Matlab
(http://www.mathworks.com) using custom and built-in
functions and the EEGLAB toolbox (http://sccn.ucsd.edu/
eeglab). The EPI gradient artifact was attenuated by calculating
the average artifact template (across 2 s epochs) separately for
each channel, and subtracting the template from the individual
epochs within that channel. The EEG data were down-sampled to
1 kHz, band-pass filtered (0.01 to 50Hz), and average referenced.
Additional artifacts (e.g., BCG, eye movement, and residual
EPI gradients) were attenuated by conducting a temporal
ICA decomposition on the individual recordings (Srivastava
et al., 2005). Thirty components were estimated using the
extended Infomax algorithm implemented in EEGLAB (Bell and
Sejnowski, 1995; Lee et al., 1999). Artifactual components were
identified by visual inspection of the component time-course,
topographic distribution, and frequency spectrum and removed
from the back reconstructed time-course. Seventeen components
were eliminated on average (min 11, max 23). In this work,
ballistocardiac artifacts were corrected only by ICA. Previous
studies showed that using ICA to attenuate the BCG artifacts in
EEG data collected in a low magnetic field of 1.5 T is acceptable
rather than in higher field scanners like 3 T or 7 T (Debener
et al., 2008). We visually inspected the EEG waves and found
the BCG artifacts were indeed largely removed. The experiment
design, simultaneous acquisition details and data preprocessing
were described in our previous studies (Wu et al., 2010; Bridwell
et al., 2013). The data used in this work is the same as in these
two studies.

The preprocessed EEG data were variance normalized,
segmented into 2 s epochs (resulting in 256 epochs, i.e.,
an epoch that corresponds to each concurrently recorded
fMRI volume) and converted to the frequency domain by
the fast Fourier transform (FFT). The spectral power was
averaged within 5 frequency bands (delta: 1–4Hz; theta:
4–8Hz; alpha: 8–13Hz; beta: 13–30Hz; low gamma: 30–
35Hz) for each epoch, resulting in 10 matrices (time [256]

× electrodes [30]) of time series of spectral power for each

subject (SPdeltaeyes_open; SP
theta
eyes_open; SP

alpha
eyes_open; SP

beta
eyes_open; SP

gamma
eyes_open;

SPdelta
eyes_close

; SPtheta
eyes_close

; SP
alpha

eyes_close
; SPbeta

eyes_close
; SP

gamma

eyes_close
). The

gamma band was restricted to lower frequencies (30–35Hz)
in order to avoid the pump and ventilation artifacts, which
dominate above 40Hz (Bridwell et al., 2013; Nierhaus et al.,
2013). We noted that some other EEG literature define gamma
as >40Hz and call the band 30–35Hz as high beta. However, in
this study we name the band 30–35Hz as low gamma.

fMRI Processing
FMRI data were preprocessed using SPM5
(http://www.fil.ion.ucl.ac.uk/spm/). Images were realigned
using INRIalign (Freire and Mangin, 2001; Freire et al., 2002),
spatially normalized to MNI space (Friston et al., 1995),
subsampled to a voxel size of 3 × 3 × 3mm, and smoothed with
a Gaussian kernel (full width half maximum, FWHM, 5 × 5 ×

5mm).
One spatial group ICA (Calhoun et al., 2001, 2009; Rubinov

et al., 2009; Calhoun and Adali, 2012; Du and Fan, 2013)
was performed on the fMRI data of all subjects for the
two conditions (i.e., both eyes open and eyes close) using
the GIFT toolbox (http://mialab.mrn.org/software/gift). Subject-
specific data reduction by principle component analysis (PCA)
retained 120 (Erhardt et al., 2011) principal components (PCs)
using a standard economy-size decomposition. Reduced data
for all subjects were then decomposed into 100 (Kiviniemi
et al., 2009; Smith et al., 2009; Abou-Elseoud et al., 2010;
Abou Elseoud et al., 2011; Allen et al., 2011; Yu et al., 2015)
aggregate components using the Infomax algorithm (Bell and
Sejnowski, 1995). ICASSO analysis (http://research.ics.aalto.fi/
ica/icasso; 10 iterations) indicated that the components were
stable (see Figure S1). Single subject independent components
(ICs) and associated time courses (TCs) were back-reconstructed
(Calhoun et al., 2001; Erhardt et al., 2011). Fifty-four ICs
were characterized as intrinsic connectivity networks (ICNs), as
opposed to physiological, movement related, or imaging artifacts
(ARTs; Allen et al., 2014; Yu et al., 2015). The components
were evaluated based on expectations that ICNs should exhibit
peak activations in gray matter, low spatial overlap with known
vascular, ventricle, motion, and susceptibility artifacts and should
have TCs dominated by low-frequency fluctuations (<0.1Hz;
Cordes et al., 2000). Following Allen et al. (2014), TCs of
the 54 ICs underwent additional post-processing including (1)
detrending linear, quadratic, and cubic trends, (2) multiple
regression of the 6 realignment parameters and their temporal
derivatives, (3) removal of detected outliers (despiking), and (4)
band-pass filtering with frequency band [0.01–0.10Hz]. Finally,
ICA time course matrices [time: 256 × ICNs: 54, FT (256 × 54)]
were derived for each condition (eyes open and eyes close) for
each subject.

Building EEG-fMRI Brain Graphs
A correlation matrix R was constructed with elements (rij)
representing Pearson correlation coefficients computed using
the 30 EEG electrodes’ spectral time-courses and the 54 fMRI
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ICs’ time-courses. This process was repeated for the five EEG
frequency bands and the two conditions (EO and EC). When
computing the correlation between EEG and fMRI signals,
following previous studies (Goldman et al., 2002; Laufs et al.,
2003a; Moosmann et al., 2003), EEG power time courses were
convolved with a canonical hemodynamic response function
(HRF) to account for the delayed hemodynamic response.

Consequently, undirected static connectivity EEG-fMRI
graphs were built from each of the N × N (N = 84 in this study,
including 30 EEG electrodes and 54 fMRI brain components)
correlation matrices R. In order to preserve the information for
both positive and negative correlations, weighted positive (W+)
and negative (W−) connection graphs were built based on R.
In positive connection graphs, negative correlations in R were
replaced by 0 and positive correlation values were maintained. In
negative connection graphs, positive correlations were replaced
by 0 and absolute values of negative correlations in R were
maintained.

w+
ij =

{

rij if rij > 0
0 if rij ≤ 0

(1)

w−
ij =

{
∣

∣rij
∣

∣ if rij < 0
0 if rij ≥ 0

(2)

Dynamic EEG-fMRI graph analysis was performed by calculating
correlation matrices along successive sliding windows of the
matrix EF (256 × 84; width, L = 20 TRs, in steps of 1 TR;
Allen et al., 2014; Yu et al., 2015). As with the static analysis, the
first 30 columns correspond to EEG electrodes and the following
54 columns correspond to fMRI ICs. Two hundred thirty-seven
EEG-fMRI correlation matrices were computed for 237 (237 =

256− 20+ 1) windows. Positive and negative connection graphs
were analyzed separately, as in the static analysis. See Figure 1

for the framework of building static and dynamic concurrent
EEG-fMRI multi-modal brain graphs.

Here we use a window width of 20 TRs (40 s) based on a
previous study indicating that cognitive states may be correctly
identified with as little as 30–60 s of data (Shirer et al., 2012).
A recent study has shown that non-stationary fluctuations in
functional connectivity can in theory be detected with window
length of 40 s (Zalesky and Breakspear, 2015). Also, others
have demonstrated that changes of brain connectivity are not
particularly sensitive to the specific time-window length (in the
range of 10–20 2 s TRs, 20–40 s; Li et al., 2014). Previous works
of our group and others consistently show that shorter time
windows result in a lower number of statistically significant
correlations in brain connectivity and greater variability of
correlation values (Chang and Glover, 2010; Hutchison et al.,
2013b; Allen et al., 2014; Yu et al., 2015), whereas a sliding
window size of about 22 TRs (44 s) provides a good trade-
off between the ability to resolve dynamics and the quality of
connectivity estimation (Allen et al., 2014; Yu et al., 2015).

Connectivity strength (CS), clustering coefficient (CC),
and global efficiency (GE) are three basic and important
graph metrics which measure the functional segregation and
integration of brain networks (Rubinov and Sporns, 2010).
To quantitatively assess the topological properties of the

brain connectivity, both global level and nodal level of these
three graph metrics were derived for static and dynamic
graphs in this study using the brain connectivity toolbox
(http://www.brain-connectivity-toolbox.net/). For mathematical
definitions and equations for computing the graph measures see
the below Section Equations for Computing Graph Measures.
More details are available in (Rubinov and Sporns, 2010)]. The
variances of 237 dynamic graph metrics and the amplitude of low
frequency (0–0.025Hz) fluctuations of the time series of dynamic
graph measures were computed in each subject. For statistical
analysis, 5 (frequency band) × 2 (eyes condition) compound
symmetry repeated measure analysis of variance (ANOVA) and
paired t-tests were performed on static and dynamic measures.

Equations for Computing Graph Measures
We denote G as the set of all nodes in the weighted graphW, and
N (N = 84 in this study) is the number of nodes. Connectivity
strength of node i is defined as below:

CSi =
∑

jǫG
wij (3)

The connectivity strength of whole graph (global level) is the
average of the connectivity strength of all the nodes in the graph:

CSnet =
1

N

∑

iǫG
CSi (4)

Nodal level Clustering coefficient is computed using the below
equation:

CCi =
1

CSi(CSi−1)

∑

j,kǫG
(wijwikwjk)

1/3 (5)

The clustering coefficient of whole graph is the average of the
clustering coefficient of all the nodes in the graph:

CCnet =
1

N

∑

iǫG
CCi (6)

Global efficiency of node i is defined as:

GEi =

∑

jǫN,j 6= i (dij)
−1

N − 1
(7)

In which

dij =
∑

auvǫg
i
w
↔j

f (wuv) (8)

Where f is a map (here is an inverse) from weight to length

and gi
w
↔j is the shortest weighted path between i and j. Global

efficiency of the whole graph is the average of the global efficiency
of all the nodes in the graph.

Detecting Connectivity States
Recent fMRI studies showed that fluctuations of time-varying
functional brain connectivity gives rise to discrete highly-
organized patterns that may emerge or dissolve over time,
which are called connectivity states (Cribben et al., 2012;
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FIGURE 1 | Pipeline for building concurrent EEG-fMRI multi-modal brain graphs. ¬ Segment EEG signal into 2 s time windows, and compute the average

spectral power within a selected frequency window.  Perform group ICA on fMRI data. ® Compute the correlation coefficient within and across the EEG spectral

power’s and fMRI ICA’s full time courses, generating one EEG-fMRI static connectivity matrix for each frequency band. ¯ Segment EEG spectral power and fMRI ICA

time courses into time windows, then compute the correlation between each pair of time windowed time courses to get dynamic EEG-fMRI brain graphs. Both

positive and negative correlations in the correlation matrix (R) are shown in this figure. These steps are repeated for each of the 5 frequency bands and during eyes

open and eyes closed conditions.

Allen et al., 2014; Yang et al., 2014; Yu et al., 2015). Here
we performed the method developed in one of our previous
studies (Yu et al., 2015) to detect connectivity states of the

dynamic EEG-fMRI graphs in each individual. Firstly, nodal level
connectivity strength of each time-varying EEG-fMRI graph was
computed. To estimate how the EEG-fMRI network patterns
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of different time-windows were associated to each other, a
new correlation matrix CCS (237 × 237; 237 is the number
of time windows) was then computed based on correlations
of the nodal connectivity strength between each pair of time
windows across 84 nodes. Modular community structure is
one of the most ubiquitous properties of complex networks
(Newman, 2006; Bullmore and Sporns, 2009). Modularity is
a function that measures the quality of a division of nodes
into groups or communities, and modules of the matrix CCS
may correspond to sets of time windows with similar brain
connectivity patterns. Thus, the modular organization of CCS
was analyzed with the modularity algorithm of Newman (2006)
implemented in the brain connectivity toolbox. The number
of modules of CCS is the number of connectivity states for
the dynamic EEG-fMRI graph. Finally, the EEG-fMRI brain
graphs from different time windows that categorized to the same
module were averaged to get the graph of that connectivity state.
More details of this approach were introduced in (Yu et al.,
2015).

RESULTS

Spatial Maps of fMRI Brain Components
Figure 2A displays the spatial maps of the 54 ICNs identified with
group ICA. Based on their anatomical and presumed functional
properties, 54 ICNs are arranged into groups of subcortical (SC),
auditory (AUD), somato-motor (SM), visual (VIS), cognitive
control, default-mode (DM), and cerebellar (CB) components.
ICNs are similar to those observed in previous high model order
ICA decompositions (Abou-Elseoud et al., 2010; Allen et al.,
2014; Yu et al., 2015), and a subset have been associated with
cognitive functions inmeta-analytic studies (Rottschy et al., 2012;
Balsters et al., 2014; Kohn et al., 2014; Amft et al., 2015).

Static EEG-fMRI Graph
Figure 2B displays the structure of stationary connectivity
between graph nodes (ICNs and EEG channels), computed over
the entire fMRI time courses and EEG spectra power time courses
for the five frequency bands (delta, theta, alpha, beta, low gamma)
and averaged over 25 subjects in each condition (eyes open
and eyes closed). Patterns of connectivity within fMRI ICNs are
consistent with prior literature, showing modular organization
within sensory systems and default mode regions, as well as
anticorrelation between these regions (Fox et al., 2005; Shirer
et al., 2012; Allen et al., 2014; Yu et al., 2015).

For the global level graph metrics of positive connection
networks, a five (frequency band: delta, theta, alpha, beta,
low gamma) × two (eyes condition: open, closed) compound
symmetry repeated measures ANOVA shows that the main
effect of frequency band is significant (P < 0.001) for all three
metrics, and the main effect of eyes condition is significant (P <

0.01) on clustering coefficient only. Post-hoc paired t-tests reveal
significantly (P < 0.01) higher clustering coefficient during eyes
closed than eyes open in beta band.

For the global level graph metrics of negative connection
networks, a five (frequency band: delta, theta, alpha, beta,
low gamma) × two (eyes condition: open, closed) compound

symmetry repeated measures ANOVA shows that the main
effects of frequency band and eyes condition are significant (P
< 0.05) for all three metrics (connectivity strength, clustering
coefficient, global efficiency). Post-hoc paired t-tests reveal
significantly (P < 0.01) higher connectivity strength during eyes
closed than eyes open in alpha and beta bands, and significantly
higher global efficiency during eyes closed in the beta band.

Figures S2, S3 show the group means of the graph metrics
in the eyes closed and eyes open conditions computed within
the delta, theta, alpha, beta and low gamma frequency bands of
positive and negative connection graphs, respectively.

For nodal level graph metrics of positive connection graphs,
the main effect of eyes condition is significant (FDR correction,
q < 0.001) on all three graph metrics for 3 brain components
which belong to somatomotor, visual, and auditory components,
respectively. Graph measures are higher during eyes closed than
during eyes open. For the spatial maps of the 3 ICNs see
Figure S4.

For nodal level graph metrics of negative connection graphs,
the main effect of eyes condition is significant (FDR correction,
q < 0.001) on all three graph metrics for only one visual brain
components. Graph measures are higher during eyes closed than
during eyes open. For the spatial maps of that ICN see Figure S5.

To visually display the difference between eyes conditions of
the brain network, as an example, we show the values of the
nodal graph measures and the pattern of the connections from
a visual component node to all of the other graph nodes in the
five frequency bands during eyes open and eyes closed conditions
in positive and negative connection graphs in Figures 3, 4,
respectively.

Dynamic EEG-fMRI Graph
Figures S7–S16 display the global graph metrics including
connectivity strength (CS), clustering coefficient (CC), and
global efficiency (GE) of both positive connection and negative
connection time varying EEG-fMRI brain connectivity (237 time
windows) in the five frequency bands for all 25 subjects in
eyes open and eyes closed conditions. These figures indicate
the changes in graph metrics over time. Figures S17, S18 show
positive connection and negative connection time varying global
level connectivity strength of an example subject, respectively.
As demonstrated from the CS time series (Figures S17, S18,
A1, A2), the CS is highly non-stationary [Kwiatkowski-Phillips-
Schmidt-Shin (KPSS) tests, P< 0.01]. Fourier analysis of the time
series (Figures S17, S18, B1, B2) shows that low-frequency CS
oscillations peak between 0.001 and 0.02 Hz.

Variance (VAR) and amplitude of low frequency (LFA)
[0–0.025Hz] oscillations of the time varying global level graph
metrics are computed. For time-varying positive connection
graphs, five (frequency band: delta, theta, alpha, beta, low
gamma) × two (eyes condition: open, close) compound
symmetry repeated measure ANOVA shows that the main effect
of eyes condition is not significant on VAR and LFA of all
dynamic graph measures. The main effect of frequency band
is significant (P < 0.01) on VAR and LFA of CS and GE (see
Figure 5), indicating that the graphmetrics computed using delta
and theta EEG frequencies demonstrate low frequency patterns of
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FIGURE 2 | Spatial maps of the 54 ICs (A), and structure of the group mean static EEG-fMRI brain graphs in the five frequency bands for eyes open,

eyes closed, and difference between eyes conditions (B). Both positive and negative correlations of the correlation matrix are shown in this figure. See Figure S6

for the nodes organization. (EO, eyes open; EC, eyes closed; SC, sub-cortical; AUD, auditory; SM, somatomotor; VIS, visual; CC, cognitive control; DM,

default-mode; CB, cerebellar).

time varying connectivity. For time-varying negative connection
graphs, the main effect of eyes condition is significant (P < 0.01)
on VAR of CS and GE, and on LFA of CS (P < 0.05). The main
effect of frequency band is significant (P < 0.001) on VAR and
LFA of CS and GE (see Figure 6). In general, we found greater
variance (VAR) and LFA in CS and GE in eyes closed alpha
compared to eyes open alpha.

For nodal level dynamic graph metrics of positive connection
networks, the main effect of eyes condition on the VAR and LFA
of all three dynamic measures is significant (FDR correction, q
< 0.001) at two cognitive control brain components. For the
spatial map of these two components see Figure S19. One visual
component shows significant (FDR q< 0.001) main effect of eyes
condition on VAR and LFA of two metrics (CS and GE). See
Figure S20 for its spatial map. The same component is shown in
(Figures 3, 4, 9, 10). To demonstrate the dynamic properties of
nodal level graph metrics, we show VAR and LFA of the visual
component as an example in Figures 7, 8.

Connectivity States
Consistent with previous dynamic fMRI connectivity studies
(Allen et al., 2014; Damaraju et al., 2014; Rashid et al., 2014;
Yang et al., 2014), some connectivity patterns of the dynamic
EEG-fMRI graphs reoccur over time. Connectivity states are
detected using the method developed in our previous study (Yu
et al., 2015). Specifically, 2–6 states are detected during each eyes
condition in each subject for both positive and negative. See
Tables S1, S2 for the details about how many connectivity states
are detected in each subject. For a visual view of the structure
of different connectivity states in an example subject, see Figures
S21–S24, and Figures 9, 10.

DISCUSSION

In the present study, concurrent EEG-fMRI resting state data
collected during eyes open and eyes closed conditions are used
to build multi-modal brain graphs. FMRI data are decomposed
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FIGURE 3 | (A) Graph metrics of a visual component node in the static positive connection graphs. Connectivity strength is indicated on the left, the clustering

coefficient is indicated in the middle, and global efficiency is indicated on the right. The bar color indicates the eyes (open vs. closed) condition and the bar height

indicates the mean value of the measurement for the 25 subjects. Error bars correspond to standard deviations. The main effect of the eyes condition is significant for

CS and GE (FDR correction, q < 0.001), with higher values during eyes closed than during eyes open. (“*” indicates P < 0.05 for post-hoc paired t-test). (B) Patterns

of connections from one visual component node to other nodes are indicated for the different frequency bands and conditions. The graphs are plotted using the same

threshold across all 5 frequency bands in eyes open, eyes closed or the difference between the two conditions. Only positive connections are shown in the graphs of

difference between conditions. Color dots inside the brain map indicate fMRI brain components. Color dots outside the brain map indicate EEG electrodes. (CS,

connectivity strength; CC, clustering coefficient; GE, global efficiency; EC, eyes closed; EO, eyes open; FE, frontal electrodes; CE, central electrodes; PE, parietal

electrodes; OE, occipital electrodes; TE, temporal electrodes).

with group ICA into ICNs and corresponding time courses.
EEG signals are segmented into 2 s-epochs and the spectral
power is computed and averaged within five frequency bands
(delta, theta, alpha, beta, and low gamma) for each segment.
EEG-fMRI brain graphs are built by computing the correlations
between and among fMRI ICA time courses and EEG spectral
power time courses. Connectivity strength, local efficiency, and
global efficiency are calculated for both static graphs, which are
estimated using the full length of time courses, and dynamic
graphs, which are estimated using a sliding window method.
Five (frequency band: delta, theta, alpha, beta, low gamma) ×
two (eyes condition: open, close) compound symmetry repeated

measure ANOVA and paired t-tests are performed to identify
significant differences across frequencies and eyes conditions.
For static graphs, in positive connection networks, graph metrics
are higher during the eyes closed condition compared to eyes
open mainly in delta and theta bands (Figure 3). In negative
connection networks, graph metrics are higher during eyes
closed compared to eyes open primarily in alpha and beta
bands (Figure 4, Figure S3). For time varying graphs, in positive
connection networks, the LFA and VAR of dynamic graph
measures (in nodal level of specific nodes) are higher in eyes
closed than eyes open mainly in delta and theta bands (Figure 7).
In both positive and negative connection networks, generally, we
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FIGURE 4 | (A) Graph metrics of a visual component node in the static negative connection graph. Connectivity strength is indicated on the left, the clustering

coefficient is indicated in the middle, and global efficiency is indicated on the right. The bar color indicates the eyes (open vs. closed) condition and the bar height

indicates the mean value of the measurement for the 25 subjects. Error bars correspond to standard deviations. The main effect of the eyes condition is significant for

CC (FDR correction, q < 0.001), with higher values during eyes closed than during eyes open. (“*” indicates P < 0.05 for post-hoc paired t-test). (B) Patterns of

connections from one visual component node to other nodes are indicated for the different frequency bands and conditions. The graphs are plotted using the same

threshold across all 5 frequency bands in eyes open, eyes closed or the difference between the two conditions. Only positive connections are shown in the graphs of

difference between conditions. Color dots inside the brain map indicate fMRI brain components. Color dots outside the brain map indicate EEG electrodes. (CS,

connectivity strength; CC, clustering coefficient; GE, global efficiency; EC, eyes closed; EO, eyes open; FE, frontal electrodes; CE, central electrodes; PE, parietal

electrodes; OE, occipital electrodes; TE, temporal electrodes).

found greater variance (VAR) and LFA in CS and GE in eyes
closed alpha compared to eyes open alpha (Figures 5, 6) which
is in line with previous studies (Wu et al., 2010; Bridwell et al.,
2013). Consistent with previous single modality fMRI studies,
dynamic EEG-fMRI connectivity shows some connectivity states
which re-occur over time. This work provides an important
first step in fusing EEG and fMRI using a graph theoretical
framework.

In early studies which combine EEG and fMRI, EEG signals
are traditionally separated into five frequency bands: delta,
theta, alpha, beta, and gamma (Laufs et al., 2003b; Mantini
et al., 2007; Keilholz, 2014). Different frequencies have been
linked to different functional properties (Buzsaki, 2006). For

example, alpha power increases at rest with eyes closed compared
to eyes open (Pfurtscheller et al., 1996; de Munck et al.,
2007), and increases when a greater number of items are
held in working memory (Klimesch et al., 1997, 1999; Jensen
et al., 2002). Experimental results have related power increases
and synchronization in the gamma frequency band to the
performance of perceptual and cognitive operations, including
attention (Womelsdorf and Fries, 2007), conscious perception
(Melloni et al., 2007), and decision making (Donner et al.,
2009). Slower frequencies, such as delta, arise during sleep,
and are hypothesized to reflect diminished temporal complexity
underlying loss of conscious awareness (Tononi et al., 1994;
Tononi and Edelman, 1998; Tononi, 2004, 2008). Low frequency
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FIGURE 5 | Amplitude of low frequency (LFA) and variance (VAR) of the

time series of three global level graph measures in time-varying

positive connection graphs. The bar color indicates the eyes condition and

the bar height indicates the mean value of VAR or LFA for the 25 subjects. Error

bars correspond to standard deviations. The main effect of eyes condition is

not significant for LFA and VAR of dynamic graph measures. The main effect of

frequency band is significant (P < 0.01) on VAR and LFA of CS and GE. (CS,

connectivity strength; CC, clustering coefficient; GE, global efficiency).

oscillations also appear to correspond to the cognitive events
which primarily contribute to evoked potential’s (Demiralp et al.,
1999).

The majority of previous studies which combine EEG and
fMRI data use correlation or general linear modeling (GLM)
to link fluctuations between multiple EEG frequency bands and
fMRI voxels (Bridwell and Calhoun, 2014). Correlations between
EEG power variations of delta, theta, alpha, beta, gamma rhythms
and BOLD activity of specific brain regions (ICNs; Laufs et al.,
2003b), or BOLD connectivity between brain regions (ICNs)
have been estimated (Tagliazucchi et al., 2012). These studies
suggest that each functional brain ICN is characterized by a
specific electrophysiological signature, and that BOLD fMRI
fluctuations have a neurophysiological origin (Mantini et al.,
2007).

In this work, we separate the EEG data into five frequency
bands as in previous studies. However, in addition to
computing the correlations between EEG signals and
fMRI BOLD signals, we compute EEG-fMRI multi-modal
brain graphs in which EEG nodes provide high temporal
resolution information and fMRI nodes provide high spatial
resolution. The finding that graph metrics show differences
across frequency bands (the main effect of frequency
band is significant) is consistent with the hypothesis that
different EEG frequencies are associated with different BOLD
activities.

FIGURE 6 | Amplitude of low frequency (LFA) and variance (VAR) of

dynamic global graph metrics in time-varying negative connection

graphs. The bar color indicates the eyes condition and the bar height

indicates the mean value of the measurement for the 25 subjects. Error bars

correspond to standard deviations. The main effect of eyes condition is

significant (P < 0.05) for the LFA of CS and the VAR of CS and GE. The main

effect of frequency band is significant (P < 0.001) on VAR and LFA of CS and

GE. (“*” indicates P < 0.05 for paired t-test; CS, connectivity strength; CC,

clustering coefficient; GE, global efficiency).

Within this study, we characterize different graph properties
between eyes open and eyes closed conditions. In static
positive connection EEG-fMRI graphs, nodal level graph metrics
are higher during the eyes closed condition in three brain
components which belong to somatomotor, visual, and auditory
areas. In negative connection graphs, a visual component shows
different nodal level graph measures (for all three metrics)
between eyes conditions. The LFA and VAR of dynamic nodal
graph measures of two cognitive control components are higher
during eyes closed than eyes open for positive connection
networks. In general, these findings are consistent with and
add to previous studies demonstrating differences in BOLD
amplitudes and functional connectivity across the two conditions
(McAvoy et al., 2008; Zou et al., 2009, 2015). Importantly, the
present findings provide new insights by incorporating fMRI
spatial locations and EEG frequency bands within graph theoretic
measures of brain connectivity between eyes closed and eyes open
conditions. For example, the differences of graphmetrics between
eyes conditions are mainly in delta and theta bands for positive
connection networks and mainly in alpha and beta bands in
negative connection networks.

Multiple recent brain imaging studies suggest that the
functional brain connectivity is not stationary but changes over
minute-to-minute intervals (Hutchison et al., 2013a; Calhoun
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FIGURE 7 | Amplitude of low frequency (LFA) and variance (VAR) of the

time series of three graph measures of a visual component node in

time-varying positive connection graphs. The bar color indicates the eyes

condition and the bar height indicates the mean value of VAR or LFA for the 25

subjects. Error bars correspond to standard deviations. The main effect of eyes

condition is significant (FDR correction, q < 0.001) for LFA and VAR of CS and

GE. Values of VAR and LFA are higher in eyes closed than in eyes open and

paired t-tests show significant difference between eyes open and eyes closed

for CS and GE mainly in delta and theta bands. The main effect of frequency

band is not significant for any measure. (“*” indicates P < 0.05 for paired t-test;

CS, connectivity strength; CC, clustering coefficient; GE, global efficiency).

et al., 2014). Here we assess dynamic properties (such as LFA
and VAR) of the time-varying EEG-fMRI brain graphs and
their associated connectivity states. Our results characterize
dynamic measures of multi-modal functional brain organization
by combining concurrent EEG-fMRI signals, and support the
hypothesis that variability of brain connectivity emerges from
structured connectivity patterns that emerge and dissolve over
time (Allen et al., 2014).

Notably, the findings that alteration of graph measures of
specific fMRI nodes across eyes conditions occurs in particular
EEG frequency bands provide new electrophysiological
signatures of functional brain connectivity examined in fMRI
data, and imply that the graph-theory based analysis is powerful
to assess the associations between EEG and fMRI. However, a
few potential methodological limitations need to be discussed.
Graph metrics may depend in part on the methods used to
identify nodes. Thus, it is worth considering the difference
between ICA-based and anatomically-based approaches. Within
fMRI, brain graph nodes are often formed using predefined
anatomical templates such as automated anatomical labeling
(AAL; Tzourio-Mazoyer et al., 2002; Liu et al., 2008; Lynall
et al., 2010), randomly generated templates (Hagmann et al.,

FIGURE 8 | Amplitude of low frequency (LFA) and variance (VAR) of

dynamic graph metrics of a visual component node in time-varying

negative connection graphs. The bar color indicates the eyes condition and

the bar height indicates the mean value of the measurement for the 25

subjects. Error bars correspond to standard deviations. The main effect of

eyes condition is not significant for any measure. The main effect of frequency

band is significant (FDR correction, q < 0.001) for all measures. (“*” indicates

P < 0.05 for paired t-test; CS, connectivity strength; CC, clustering coefficient;

GE, global efficiency).

2008; Fornito et al., 2010), and voxel-based divisions (Eguíluz
et al., 2005; Buckner et al., 2009; Yu et al., 2011c, 2013). Different
approaches may significantly modulate the quantitative measures
of graph metrics of brain connectivity (Fornito et al., 2013; de
Reus and van den Heuvel, 2013). Also, prior work has shown
a detriment to network estimation when using atlas-based
regions of interest (ROIs) as graph nodes (Smith et al., 2011;
Craddock et al., 2012; Shirer et al., 2012). Moreover, the ROIs
provide an imperfect segregation of the functional boundaries
of the human brain. However, ICA, which is adopted in this
study, provides a data-driven approach to identify spatial brain
components as functionally homogeneous nodes (Yu et al.,
2011a,b; Calhoun and Adali, 2012; Calhoun et al., 2012). We
choose a relatively high model order (i.e., 100 ICs) ICA, because
previous studies have demonstrated that such models yield
refined components which correspond to known anatomical
and functional segmentations (Kiviniemi et al., 2009; Abou-
Elseoud et al., 2010). Importantly, previous work has shown
that fMRI graph measures are relatively insensitive to high
model orders (Yu et al., 2011b, 2015). However, a limitation
of this study is related to the differences in node number and
edge weight from different modalities. Positive correlations
within EEG signals are much higher than within fMRI signals
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FIGURE 9 | Patterns of connections from a visual component node to all other graph nodes for the connectivity states identified in an example

subject in the alpha band for time-varying positive connection graphs. Color dots inside the brain map indicate the approximate centroid location of fMRI brain

components. Color dots outside the brain map indicate EEG electrodes. (FE, frontal electrodes; CE, central electrodes; PE, parietal electrodes; OE, occipital

electrodes; TE, temporal electrodes).

FIGURE 10 | Patterns of connections from a visual component node to all other graph nodes for the connectivity states identified in an example

subject in the alpha band for time-varying negative connection graphs. Color dots inside the brain map indicate the approximate centroid location of fMRI

brain components. Color dots outside the brain map indicate EEG electrodes. (FE, frontal electrodes; CE, central electrodes; PE, parietal electrodes; OE, occipital

electrodes; TE, temporal electrodes).

and between EEG-fMRI signals (see Figure 2B). Also, the
Pearson correlation may contain some redundant information,
though the ICA performed in data processing, which fits all the
interacting network information in a single model with multiple
components, may control some of them.

It’s important to note that graph measures were computed
based on the formula defined for a single-modal (classical)
graph. The graph metrics may be interpreted in the same way
as traditional graphs. But it is unclear how global level graph
measures within a multi-modal graph would be affected by the
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distribution of edges and nodes from different modalities. This
limitation is shared by each of the two conditions examined
within the present study (eyes open and eyes closed). Thus, the
observation of graph metric differences here motivates further
studies which extend the single-modal (classical) graph formula
for EEG-fMRI (Zhang et al., 2008). In addition, future work
is needed to develop criteria for determining the number of
nodes and edges in the context of a multi-modal brain graph.
Also, future work may build EEG and fMRI graphs separately
and evaluate the correlation between graph metrics between
the two, or develop new methods for defining brain regions
(graph nodes) with both EEG and fMRI information available
as previous studies which estimated brain graph using multi-
modality imaging data(He et al., 2008; Hermundstad et al., 2013;
Liang et al., 2013; van den Heuvel and Sporns, 2013a; Tewarie
et al., 2014a,b).

CONCLUSIONS

We believe that this work provides an important beginning
step in characterizing EEG-fMRI associations within a graph
theoretical framework. Both static and dynamic EEG-fMRI
graphs are built in five EEG frequency bands on concurrently
collected EEG-fMRI data while individuals rested with eyes
open and eyes closed. Differences in global and nodal level
static graph metrics including connectivity strength, local
efficiency, and global efficiency, are revealed among frequency
bands and between eyes conditions. Dynamic properties of the
graph metrics also show differences between eyes conditions.
These findings incorporate spatial location (provided by fMRI)
information and frequency (delta, theta, alpha, beta, and gamma
bands provided by EEG) information in identifying graph
properties that differ between brain states (i.e., eyes open vs.
eyes closed) by linking electro-hemodynamic responses. This
paper proposes a novel approach for assessing associations
among concurrent EEG and fMRI measures which couples
electoral and hemodynamic BOLD signals in the brain at a
network level.
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