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Functional brain networks demonstrate significant temporal variability and dynamic reconfiguration even in the resting state.

Currently, most studies investigate temporal variability of brain networks at the scale of single (micro) or whole-brain (macro)

connectivity. However, the mechanism underlying time-varying properties remains unclear, as the coupling between brain network

variability and neural activity is not readily apparent when analysed at either micro or macroscales. We propose an intermediate

(meso) scale analysis and characterize temporal variability of the functional architecture associated with a particular region. This

yields a topography of variability that reflects the whole-brain and, most importantly, creates an analytical framework to establish

the fundamental relationship between variability of regional functional architecture and its neural activity or structural connect-

ivity. We find that temporal variability reflects the dynamical reconfiguration of a brain region into distinct functional modules at

different times and may be indicative of brain flexibility and adaptability. Primary and unimodal sensory-motor cortices demon-

strate low temporal variability, while transmodal areas, including heteromodal association areas and limbic system, demonstrate

the high variability. In particular, regions with highest variability such as hippocampus/parahippocampus, inferior and middle

temporal gyrus, olfactory gyrus and caudate are all related to learning, suggesting that the temporal variability may indicate the

level of brain adaptability. With simultaneously recorded electroencephalography/functional magnetic resonance imaging and

functional magnetic resonance imaging/diffusion tensor imaging data, we also find that variability of regional functional architec-

ture is modulated by local blood oxygen level-dependent activity and a-band oscillation, and is governed by the ratio of intra- to

inter-community structural connectivity. Application of the mesoscale variability measure to multicentre datasets of three mental

disorders and matched controls involving 1180 subjects reveals that those regions demonstrating extreme, i.e. highest/lowest

variability in controls are most liable to change in mental disorders. Specifically, we draw attention to the identification of

diametrically opposing patterns of variability changes between schizophrenia and attention deficit hyperactivity disorder/autism.

Regions of the default-mode network demonstrate lower variability in patients with schizophrenia, but high variability in patients

with autism/attention deficit hyperactivity disorder, compared with respective controls. In contrast, subcortical regions, especially

the thalamus, show higher variability in schizophrenia patients, but lower variability in patients with attention deficit hyperactivity

disorder. The changes in variability of these regions are also closely related to symptom scores. Our work provides insights into the

dynamic organization of the resting brain and how it changes in brain disorders. The nodal variability measure may also be

potentially useful as a predictor for learning and neural rehabilitation.
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Introduction
The human brain demonstrates remarkable variability in its

structure and function (Rademacher et al., 2001; Sugiura

et al., 2007; Frost and Goebel, 2012), which explains inter-

subject variability in cognitive function and other behav-

iours. Intersubject variability in resting state functional

connectivity is heterogeneous across the cortex, and it is

significantly correlated with the degree of evolutionary cor-

tical expansion (Mueller et al., 2013). Individual variability

in functional connectivity is also predictive of task perform-

ance (Baldassarre et al., 2012). Recently, the temporal vari-

ability of neuronal activity and functional connectivity/

functional networks has attracted increasing attention

(Bassett et al., 2011, 2013, 2015; Hutchison et al.,

2013a; Mueller et al., 2013; Calhoun et al., 2014; Kopell

et al., 2014; Kucyi and Davis, 2014; Tagliazucchi and

Laufs, 2014; Braun et al., 2015). For example, variability

of blood oxygen level-dependent (BOLD) signal, which was

previously considered to be measurement-related ‘noise’,

has been demonstrated to have significant age-predictive

power (Garrett et al., 2010) and is related to task perform-

ance (Garrett et al., 2011). Even during rest, either sliding

window or time-frequency analysis shows non-stationarity

in both spontaneous brain activity (McIntosh et al., 2008;

Lippe et al., 2009; Garrett et al., 2010, 2011; Misic et al.,

2010; Protzner et al., 2010; Samanez-Larkin et al., 2010)

and interactions among brain regions (Chang and Glover,

2010; Kang et al., 2011; Majeed et al., 2011; Hutchison

et al., 2013b; Mueller et al., 2013).

To date, most work on dynamic brain network analysis

either focuses on single functional connectivity between a

given pair of regions of interest (Chang and Glover, 2010;

Kang et al., 2011; Majeed et al., 2011; Hutchison et al.,

2013a; Kucyi and Davis, 2014; Zalesky et al., 2014), or the

connectivity of the whole brain (Allen et al., 2014).

Temporal variability of brain networks at the mesoscale,

i.e. the functional architecture of a given region (defined

as the overall functional connectivity profile associated

with the region), has never been investigated. While non-

stationarity in functional connectivity/networks has been

revealed, the underlying mechanisms and neuroanatomical

basis for temporal variability are still unknown. The advan-

tage of investigating temporal variability of functional

architecture associated with a specific brain region (i.e. a

mesoscale analysis), is 2-fold. First, it allows coupling be-

tween temporal variability of the functional architecture of

a region and its neural activity to be conveniently analysed.

This helps delineate factors contributing to temporal vari-

ability, thus shedding light on the underlying mechanisms.

Second, it facilitates the construction of a whole-brain top-

ography of variability, which allows localization of regions

showing significant variability changes in patients, thus

helping to define the dynamics of functional brain networks

for various brain disorders. In comparison, analysis at the

level of single functional connectivity would increase the

burden of correction for multiple comparisons, while ana-

lysis of the whole-brain functional connectivity simultan-

eously may be less sensitive in uncovering local (regional)

changes.
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Temporal variability of regional, or nodal functional

architecture can be characterized by first constructing

whole-brain functional networks from BOLD signals at suc-

cessive, non-overlapping time windows and second, by com-

paring the functional architecture of a region of interest

across different windows. Accordingly, we hypothesized

that temporal variability of regional functional architecture

is modulated by local neural activity, as manifested by the

BOLD signal and EEG, and that it has an anatomical sub-

strate. Using simultaneously recorded EEG/functional MRI

and functional MRI/diffusion tensor imaging (DTI) data, we

found that the temporal variability of functional architecture

of a given region is modulated by local BOLD activity, i.e.

amplitude and frequency of BOLD oscillations during the

scan, and that it is positively associated with the EEG �

power of the region of interest. Variability is also related

to the ratio of intra- to inter-community structural connect-

ivity of a region. Application to different psychiatric dis-

orders, including schizophrenia, autism spectrum disorder,

and attention deficit hyperactivity disorder (ADHD) with

their matched controls, revealed disease-specific variability

changes in the default mode network (DMN), as well as

visual and subcortical regions of the brain, which provides

new insights of spatiotemporal organization of the brain

networks and how it changes in patients with psychiatric

disease.

Materials and methods

Participants, image acquisition and
data preprocessing

The study included eight multicentre datasets involving 1180
subjects. Six resting state functional MRI datasets were used
for case-control studies of variability change in patients with
psychiatric disorders: schizophrenia [Dataset 1: Taiwan (Guo
et al., 2014); Dataset 2: COBRE], autism (Dataset 3: New
York University-NYU; and Dataset 4: University of
Melbourne-UM, which are from ABIDE Consortium http://
fcon_1000.projects.nitrc.org/indi/abide/) and ADHD (Dataset
5: Peking University-PKU; and Dataset 6: New York
University-NYU, which are part of the 1000 Functional
Connectome Project http://fcon_1000.projects.nitrc.org/indi/
adhd200/) and matched controls. Demographic details and
medication information are given in Table 1 and
Supplementary Table 1. An EEG/functional MRI dataset
(Dataset 7) and a functional MRI/DTI dataset (Dataset 8)
from IMAGEN consortium (Schumann et al., 2010) were
also used to investigate the electrophysiological and structural
basis of variability, respectively. Details of participants, image
acquisition and data preprocessing can be found in the
Supplementary material, which also includes a discussion of
global signal removal and details of data scrubbing.

In view of the fact that we combined multicentre data for
case-control studies, and this might possibly result in a large
variation, we set up the following exclusion criteria to help
ensure data quality: (i) subjects with poor structural scans,
or functional MRI data, making successful preprocessing

unlikely [i.e. normalization to Montreal Neurological
Institute (MNI) space], or without complete demographic in-
formation; and (ii) head movement, including subjects with
410% displaced frames in a scrubbing procedure (Power
et al., 2014; Cheng et al., 2015b), or maximal motion between
volumes in each direction 43 mm, and rotation about each
axis 43� (Cheng et al., 2015a). In each dataset, patients and
controls were screened so that the total root mean square dis-
placements did not show significant differences. For the
ADHD dataset, we only have preprocessed data (i.e. BOLD
time series) from the public website, thus the data scrubbing
procedure cannot be performed. For the autism dataset,
subjects with an overall IQ score exceeding 2 standard devi-
ations (SD) from the overall ABIDE sample mean were not
included.

Temporal variability of regional
functional architecture

To characterize the temporal variability of the functional archi-
tecture associated with a given region (Fig. 1A), we first seg-
mented all BOLD time series into n non-overlapping windows
each with length l. Within the ith time window, the whole-
brain functional network Fi (an m � m matrix, with m nodes)
is obtained using Pearson correlation as the measure of func-
tional connectivity. The functional architecture of a region k at
time window i is defined as the overall functional-connectivity
profile of region k, i.e. Fi (k,:) which is a m-dimensional vector
and is shortened as Fi,k. We then define the variability of a
region of interest k as:

Vk ¼ 1� corrcoef Fi;k; Fj;k

� �
; i; j ¼ 1;2;3; . . . ; n; i 6¼ j; ð1Þ

as illustrated in Fig. 1A. The latter part of Vk compares the
functional architecture, i.e. overall functional connectivity pro-
file associated with brain region k across different time win-
dows, which is the averaged correlation coefficient among
different functional architecture of region k and thus a simi-
larity measure. Next, a deduction from 1 indicates temporal
variability of a region. In this way, it is possible to both evalu-
ate temporal variability of the functional architecture at the
network level and simultaneously localize this to a specific
brain region. In fact, this approach has been used in a different
context to measure intersubject variability of regional func-
tional architecture (Mueller et al., 2013). We have adopted
this same measure to address the temporal variability of the
functional architecture of a region in one subject.

To reduce the influence from segmentation scheme for the
BOLD signal, we perform l� 1 times segmentation for a given
window length l, and each time we start from the sth point
(s = 1,2,. . ., l) and average the variability obtained from l� 1
times segmentation. To avoid arbitrary choice of window
length in the applications, we calculate Vk at different l
(l = 10, 11, 12. . .20 volumes, equal to 20, 22, 24,. . .40 s) and
then take the average value as the final variability of the region
of interest. We chose the above window length as it was sug-
gested that window sizes around 30–60 s produce robust re-
sults in image acquisitions, cognitive states (Shirer et al., 2012)
and topological descriptions of brain networks (Jones et al.,
2012). In fact, we found that variability obtained at different
window lengths (e.g. 20 s, 30 s, 40 s) was highly correlated
(r40.98, Supplementary Fig. 1), indicating that this metric
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Figure 1 Flow chart of temporal variability analysis. (A) Definition of variability for a given region k. The time series are BOLD signals for

all brain regions, which are segmented into non-overlapping windows. Functional brain networks are constructed in each time window. The

variability of region k is obtained by comparing functional connectivity profile of region k at different windows. (B) Correlation analysis of

temporal variability with measures from multimodal neuroimaging data, such as simultaneously recorded EEG and DTI data. (C) Case-control

studies for different mental disorders, including schizophrenia, autism and ADHD using temporal variability.

Table 1 Demographic information for the eight datasets used, involving three mental disorders and two multimodal

datasets from healthy controls

Groups n Age,

years

Sex

(M/F)

PANSS (P) PANSS (N) PANSS (G) Illness

duration

SCZ Taiwan dataset (#1) Controls 62 29.9� 8.6 25/37

Schizophrenia 69 31.9� 9.6 35/34 11.9� 4.7 13.6� 6.3 27.3� 9.6 7.2� 6.6

COBRE dataset (#2) Controls 67 34.8� 11.3 42/11

Schizophrenia 53 36.8� 13.7 46/21 14.9� 4.6 14.7� 5.2 29.7� 8.2 8.9� 6.9

ADOS

Autism NYU dataset (#3) Controls 102 15.9� 6. 76/26 21.4� 12.7

Autism 75 14.8� 7.0 65/10 92.6� 31.0

UM dataset (#4) Controls 64 15.1� 3.7 48/16

Autism 38 13.6� 2.4 31/7

ADHD index

ADHD PKU dataset (#5) Control 143 11.4� 1.9 84/59 29.3� 6.4
ADHD 99 12.1� 2.0 89/10 50.4� 8.2

NYU dataset (#6) Control 108 12.2� 3.1 54/54 45.4� 6.0

ADHD 140 11.1� 2.7 106/34 71.9� 8.7

Multi-modal

imaging

EEG/functional MRI (#7) Control 26 21.4� 2.0 15/11

Functional MRI/DTI

(IMAGEN, #8)

Control 142 14.5� 0.2 66/76

ADOS = Autism Diagnostic Observation Schedule; SCZ = schizophrenia.
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does not necessarily depend on the choice of window length,
and we take the average variability over different window
lengths as mentioned above.

Correlation analysis between
temporal variability and local/global
measures from multimodalities

To identify the neural, electrophysiological and anatomical
basis of temporal variability, we performed extensive correl-
ation analyses using BOLD, EEG/functional MRI and func-
tional MRI/DTI data collected from healthy controls
(Fig. 1B). To establish the neural basis, the variability of a
region was correlated with its BOLD activity (the variance of
BOLD signal during the whole scan) and node degree across
90 brain regions for each subject in Dataset 5 (which has the
largest number of controls). To establish the electrophysiolo-
gical basis of variability, we performed correlation analyses
between the variability of a region and its � band power of
simultaneously recorded EEG during the entire scan (in
Dataset 7, across all 28 electrodes, see Supplementary mater-
ial for details of the 28 corresponding regions in the AAL
template). To establish the anatomical basis, we performed
correlation analyses between the variability of a region and
the ratio of intra- to intercommunity structural connection
(RIIC) across 90 brain regions for each subject in the
IMAGEN dataset (Dataset 8). A high RIIC implies that the
region connects more with regions belonging to the same
functional module, while a low RIIC means the region con-
nects more with nodes belonging to communities other than
its own (see DTI data preprocessing in the Supplementary
material for details).

Case-control studies: meta-analysis
integration of multicentre results

To identify regions with significant change in variability for
various mental disorders including schizophrenia, autism and
ADHD, we first performed t-test between patients and matched
healthy controls for all 90 brain regions (AAL template) for
each dataset, with age, sex and root mean square displacements
of head movement being regressed out (Fig. 1C). For disorders
with multiple datasets, we then used the Liptak-Stouffer z-score
method (Liptak, 1958) to integrate the results (e.g. MRI; Glahn
et al., 2008): the P-value of each region in the relevant dataset i
was converted to the corresponding z score: zi ¼ ��1ð1� piÞ,
where � is the standard normal cumulative distribution func-
tion. Then a combined z-score for a functional connectivity
was obtained using the Liptak-Stouffer formula as:

Z ¼

Xk

i¼1
wiziffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXk

i¼1
w2

i

q ; ð2Þ

where wi is the inverse of the variance of zi. Z follows a stand-
ard normal distribution under the null hypothesis and is trans-
formed into its corresponding P-value with both Bonferroni
(P = 0.05) and false discovery rate (FDR) (q = 0.05) correction
used to correct for multiple comparisons.

Results

Variability reflects change of
community membership, or
flexibility of a region

The temporal variability of a region defined in our paper

characterizes the collective changes of all its functional con-

nectivities over time. Low temporal variability means that

this functional architecture of a given region of interest is

highly correlated across different time windows, or alterna-

tively that the dynamical functional connectivity time series

between the region of interest and all other regions are

highly synchronized (Fig. 3A and Supplementary Fig. 2A).

On the contrary, high temporal variability means that the

dynamical functional connectivity series between a region

of interest and other regions remains independent (Fig. 3A

and Supplementary Fig. 2B). Due to the dynamic nature of

the functional brain network in resting state, a region of

interest may connect with different brain regions and be

involved in different functional communities/modules at dif-

ferent times. The variability herein defined is also a good

indicator for this property (Supplementary Fig. 3). Of the

62 healthy control subjects in Dataset 1, all subjects

showed significant negative correlation between the vari-

ability of a region and stability of its intra-community

members (P5 0.05). The intra-community members of a

region of interest indicate the regions belonging to the

same functional module with the region of interest. The

above negative correlation suggests that the higher the vari-

ability of a region of interest the less stable its intra-com-

munity members, i.e. its intra-community members change

frequently with time. Since the intra-community members

of a region of interest are not stable, the region of interest

may connect with different brain regions, and functional

communities at different times. This result indicates that

the temporal variability we defined reflects the ability or

tendency of a region to reconfigure itself into different func-

tional communities, or its flexibility in terms of functional

integration/coordination with different neural systems. The

larger the temporal variability of a region of interest, the

more functional communities it will be involved with at

different times (see Supplementary Fig. 3 for details).

Stable brain-wide topography of
variability in healthy control subjects

For healthy control subjects, we found a non-uniform dis-

tribution of variability throughout the brain (Fig. 2 and

Supplementary Table 2). Various datasets consistently dem-

onstrate low variability in primary sensory cortices (e.g.

Heschl’s gyri, postcentral and calcarine gyrus), visceral sen-

sory cortex (insular), unimodal association cortex (middle/

superior occipital gyrus, cuneus, lingual gyrus, superior

temporal gyrus), and default mode systems such as the

Mechanisms of functional brain network variability BRAIN 2016: Page 5 of 15 | 5
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medial frontal gyrus and posterior cingulate/precuneus. In

comparison, the transmodal association cortices, including

the heteromodal association cortex (such as the anterior

association cortex, which includes interior and orbital fron-

tal gyrus, the posterior association cortex including inferior

parietal gyrus, inferior/middle temporal gyrus and paracen-

tral lobule) and the limbic association cortex (such as the

temporal pole, hippocampus, parahippocampus and amyg-

dala; Pearlson et al., 1996; Bullard et al., 2013) all dem-

onstrate high variability. See Supplementary Table 3 for

details of the 90 brain regions in AAL template and their

characteristics.

As shown in Supplementary Fig. 4, the temporal variability

we defined demonstrates great similarity by showing a con-

sistent pattern in healthy controls across Datasets 1–6, indi-

cating the robustness of the variability defined in our work.

Temporal variability as an index of
regional adaptability in the brain

The human brain is perhaps the most adaptable and chan-

ging part of the body, which accounts for its incredible

learning capability. Interestingly, the transmodal cortices

of the brain, which are found to demonstrate the highest

levels of temporal variability (the top regions in

Supplementary Table 2), have almost all been implicated

in key aspects of learning, suggesting that it may provide

an index of the adaptability and plasticity of these brain

regions, which support learning. For example, the hippo-

campus is extensively involved in many aspects of learning

and memory (Deng et al., 2010), the inferior temporal

cortex in visual association learning (Kawasaki and

Sheinberg, 2008), the olfactory cortex in olfactory learning

(Fletcher and Chen, 2010), and the caudate in reinforce-

ment-based associative learning (Williams and Eskandar,

2006) and classification learning (Seger and Cincotta,

2005). In particular, there is solid evidence that learning-

associated neurogenesis (birth of brain cells) can occur in a

number of these regions in the adult mammalian brain

(Gould et al., 1999; Rakic, 2002), including hippocampus,

olfactory bulb and inferior temporal cortex. Our proposed

link between high temporal regional variability and plasti-

city underpinning learning is further supported by our add-

itional finding that it is positively associated with various

kinds of IQ score in two independent datasets (see

Supplementary Fig. 7 for details).

Correlation between variability
and measures from multiple
neuro-modalities

Blood oxygenation level-dependent activity

Variability of a region results from the temporal changes

of its functional architecture triggered by changes in

BOLD signals. We first analysed the correlation between

variability and other measures derived from the BOLD

signal over the entire period of scan, including local meas-

ures such as the amplitude and frequency of BOLD activity,

and global measures such as the degree of the region

(defined as the number of a region’s functional connectivity

Figure 2 Whole-brain variability topography on AAL template for healthy controls. The variability is averaged over the results

obtained from controls in six different datasets (Datasets 1–6). See Supplementary Table 2 for details.
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whose strength is larger than 0.3). We found that the tem-

poral variability of a region correlates negatively with both

the amplitude of its BOLD activity and the node degree, since

the BOLD activity of a region and its degree are positively

correlated, see (Fig. 3A, B and D). In addition, the variability

of a region is negatively associated with the energy of low

frequency components of the BOLD signal. For scatter plots

and details of correlations, (see Supplementary Fig. 5D, E

and F and Supplementary Table 4).

Electrophysiological recording

We next analysed the correlation between the variability of

a region and its � band power derived from EEG recorded

simultaneously with functional MRI data. Correlations

were performed across brain regions having both BOLD

signal and EEG recordings in each of the subjects in

Dataset 7. We found that the variability of a region was

mostly positively correlated with its � band power during

the entire period of scan, with 8 of 26 subjects (31%)

showing a significant positive correlation (Fig. 3A and C;

detailed in Supplementary Table 5).

Structural connectivity: diffusion tensor imaging

Finally, we analysed the correlation between the variability

of a region and its structural connectivity derived from

diffusion tensor imaging. We used the RIIC to determine

Figure 3 Correlation between temporal variability and local/global metrics obtained from various neuroimaging modalities.

Green indicates negative correlation among the variables, and red for positive correlation, with the strength of correlation listed in Supplementary

Table 4. (A) Temporal variability of the functional architecture of a region of interest. The upper part indicates that the region of interest has high

variability and that the multiple dynamical functional-connectivity time-series between the region of interest and the other regions are inde-

pendent. The lower part indicates that the region of interest has low variability and that its dynamic functional connectivity time series are

synchronous. (B) Amplitude of BOLD activity of a region of interest. The upper part is for a region with low amplitude, and lower part is for a

region with high amplitude. Here the variance of BOLD signal during the entire period of scan is used to represent the amplitude of BOLD

oscillation. (C) � band power of EEG of a region of interest. The upper part shows a region with large � band power, and the lower part shows a

region with small � band power. � band power of the EEG of the entire period of scan is used here. (D) Node degree of a region of interest

obtained from a BOLD-constructed brain network (defined as the number of functional connectivities of a region with absolute strength larger

than 0.3). The upper part shows a region with a low degree and the lower part shows a region with a high degree. (E) Ratio of intra-community to

inter-community structural connectivity (RIIC). The upper part shows a region with a small RIIC (i.e. the region of interest connects more with

nodes belonging to different communities), and the lower part is for a region with a small RIIC (i.e. the region of interest connects with nodes

belonging to the same communities). All upper parts (or lower parts) in each panel are correlated such that a region with low variability will have

higher BOLD activity, a high node degree, low � band power and a high RIIC.
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the extent to which a node is structurally connected to

nodes within its own community. Of 142 healthy subjects

in the IMAGEN dataset (Dataset 8), 49 showed a sig-

nificant correlation (P5 0.05) between regional variability

and regional RIIC, with 40 (28%) showing significant

negative correlation (r = �0.28� 0.0032; Fig. 3A and E).

Therefore, the more intra-community connections a

region has (relative to its inter-community connections),

the smaller its variability will be. A brain region with

more fibre connections to those of the same community

would be involved more stably in that functional commu-

nity, thus showing less variability. In comparison, a brain

region structurally connected to regions belonging to many

other communities will switch among them, i.e. the region

belongs to different functional communities at different

times, resulting in high variability.

Disease-specific changes of variability
in mental disorders

Next, we performed a whole-brain variability analysis in

patients with schizophrenia, autism spectrum disorders

(ASD) and ADHD and identified disease-specific changes

by comparing them to matched healthy controls. For dis-

orders with more than one dataset, meta-analysis was

adopted to integrate results from multiple datasets. For

schizophrenia, 420% of brain regions (n = 19) showed sig-

nificant differences in variability (Fig. 4A and Table 2).

Variability decreased mainly in DMNs, such as rectus,

hippocampus, parahippocampus, inferior parietal gyrus

and temporal lobe (middle temporal pole and inferior tem-

poral gurus), while it increased most prominently in sub-

cortical areas such as the thalamus, pallidum and putamen,

and the visual cortex (superior occipital and lingual gyrus).

Thalamic variability was associated with positive and gen-

eral symptom scores, while variability in visual areas cor-

related with general symptoms such as poor impulse

control and preoccupation (Table 3).

For autism patients, all regions showing significant changes

had higher variability when compared to healthy controls,

most significantly in the medial orbital and superior medial

frontal gyrus, rectus and angular gyrus (Fig. 4B and Table 2).

In particular, the variability of these default network regions

was positively associated with the restricted, repetitive and

stereotyped patterns of behaviour subscore (Table 3).

For ADHD patients, DMN regions involving the poster-

ior cingulate cortex and angular gyrus all showed higher

variability. In contrast, brain regions in the subcortical net-

work, i.e. thalamus, showed lower variability in patients

with ADHD compared to healthy control subjects

(Fig. 4C and Table 2). Variability changes in posterior cin-

gulate and frontal regions were associated with the severity

of ADHD symptoms (Table 3).

Discussion

Brain regions with highest and lowest
variability in healthy control subjects

We find that both primary sensory cortex and unimodal

association cortex show very low variability because these

regions are involved in unitary neural circuitry responsible

for simple sensory functions. These regions are usually

structurally connected more with regions belonging to the

same modality (i.e. the same functional module) and their

variability is small. In comparison, the transmodal areas

(Mesulam, 1998), including the heteromodal association

cortex and limbic regions, demonstrate high variability.

These regions receive information from multiple sensory

modalities and other heteromodal regions and are therefore

responsible for more complex, integrated cognitive activ-

ities (Pearlson et al., 1996; Bullard et al., 2013).

Consequently, these regions may participate in multiple

functional communities at different times with resultant

high temporal variability, or flexibility. Our results from

resting state functional MRI are consistent with those ob-

tained in task functional MRI by Bassett et al. (2013), who

found that in a motor learning task primary sensorimotor

and visual areas reconfigure little over time, while multi-

modal association regions reconfigure frequently.

Lastly, we note the relatively low variability of the DMN,

including medial frontal gyrus and posterior cingulate/pre-

cuneus, which is consistent with the strong functional con-

nectivity within this network during resting state. These

results are also in agreement with Power et al. (2011),

who suggested that sensory-motor, visual and default

mode systems are rather stationary.

Neural, electrophysiological and
anatomical basis of variability

In terms of defining the neural basis of variability, Fig. 3

and Supplementary Table 4 show a negative correlation

between the variability of a region and its BOLD activity/

node degree. This indicated that the variability of a re-

gion is modulated by its BOLD activity. To facilitate in-

formation transmission with other regions, it is natural for

a brain region to demonstrate greater BOLD activity to

allow for high-level functional integration with other re-

gions. Under these circumstances, this region will also

have a high level of functional connectivity with other

regions and, hence, higher degree. In this case, the tem-

poral variability of the region of interest is expected to be

low to maintain a high level of information transmission

and functional integration. These results are consistent

with previous studies (Bassett et al., 2012; Zalesky

et al., 2012; Yu et al., 2013), which showed that activity
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and connectivity are related to one another in the resting

state.

The negative correlation between the variability of a

region of interest and the low frequency component of its

BOLD signal (see Supplementary Fig. 5D, E and F and

Supplementary Table 4) suggests that the low-frequency

BOLD oscillation of a region facilitates information trans-

mission and functional integration. This is essentially

because regions with more low-frequency components

tend to synchronize more easily with other regions and

thus have lower temporal variability. It is also consistent

with the finding that low-frequency oscillations allow for

integration of large neuronal networks (Buzsaki and

Draguhn, 2004). In contrast, a region with more high-fre-

quency components usually cannot synchronize effectively

with other regions, thus demonstrating high variability.

Figure 4 Brain regions showing significant variability differences between patients with mental disorders and matched healthy

controls. (A) Schizophrenia; (B) autism; (C) ADHD. Blue indicates that the variability of patients is lower than that of controls, and red indicates

the opposite; see Table 2 for details.
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For the electrophysiological basis of variability, the vari-

ability of a region was modulated by the � band power of

its EEG, as manifested by a positive correlation between

variability of a region and its � power during the entire

scan (Fig. 3A, C and Supplementary Table 5) across brain

regions. This is consistent with the finding that � oscillation

inhibits BOLD activity by showing a strong negative cor-

relation with BOLD activity, especially in occipital, parietal

and frontal cortices (Laufs et al., 2006; de Munck et al.,

2007). In view of our finding that there is a negative cor-

relation between BOLD activity and temporal variability

(Fig. 3A and B), the observed positive correlation between

� power and variability is therefore expected. Our results

are based on correlation analysis across brain regions

for each subject. In comparison, Chang et al. (2013) per-

formed a correlation analysis across subjects for a given

functional connectivity (i.e. between default-mode and

dorsal attention networks). Further studies investigating

correlation between brain network variability and EEG sig-

nals at different bands (both across subjects and across

brain regions) are needed to provide a full understanding

of the electrophysiological basis of variability (Thompson

et al., 2015).

In terms of the structural basis of variability, we found a

negative correlation between variability and the ratio of

intra- to inter-community structural connections (Fig. 3A

and E). Thus, if a region is more structurally connected

to nodes of the same functional community, then it will

be more stably involved with this community and exhibit

lower variability. In comparison, a region with structural

connections to multiple communities would tend to fre-

quently switch functional communities and demonstrate

high variability.

As the resting state is a unconstrained condition that

involves varying levels of mind-wandering, arousal, at-

tention and vigilance (Chang and Glover, 2010), the

Table 2 Significantly different regional variability

Brain region Control Patient P-value Brain region Control Patient P-value

Schizophrenia

DMN regions: Vc4Vp Vision regions: Vc5Vp

Rectus L 0.7420 0.7036 0.0012 (S) Lingual L 0.6451 0.6813 0.0018

Hippocampus L 0.7458 0.7246 0.0103 (S) Lingual R 0.6474 0.6776 0.0082

Hippocampus R 0.7532 0.7210 0.0006 (S) Occipital Sup L* 0.6421 0.6869 0.0003

(L) ParaHippocampal L* 0.7711 0.7304 0.00003 (S) Occipital Sup R 0.6463 0.6867 0.0011

(L) ParaHippocampal R* 0.7635 0.7114 3e-8 Subcortical regions: Vc_Vp

Parietal Inf L 0.7470 0.7221 0.0068 (S) Putamen R 0.6671 0.6967 0.0062

(L) Temporal Pole Mid L 0.7661 0.7318 0.0022 Pallidum R 0.6888 0.7186 0.0091

(L) Temporal Inf L* 0.7621 0.7263 0.0005 Thalamus R 0.7086 0.7405 0.0046

(L) Temporal Inf R 0.7779 0.7488 0.0020 Other regions

Heschl L 0.6768 0.7111 0.0043

(L) Temporal Pole Sup L 0.7612 0.7357 0.0103

Supp Motor Area L 0.7488 0.7197 0.0048

Autism

DMN regions: Vc_Vp Other regions: Vc_Vp

(S) Frontal Sup Medial R 0.6878 0.7127 0.0018 Cingulum Ant L 0.7192 0.7404 0.0037

(S) Frontal Med Orb L* 0.6873 0.7196 0.0002 (L) Paracentral Lobule L 0.7909 0.8126 0.0036

Frontal Med Orb R 0.7005 0.7274 0.0009

Rectus L 0.7269 0.7531 0.0018

Angular L 0.7205 0.7418 0.0029

ADHD

DMN regions: Vc_Vp Subcortical regions: Vc`Vp

Angular L* 0.7479 0.7835 0.0002 Thalamus L 0.8002 0.7744 0.0038

Angular R 0.7445 0.7759 0.0030 Thalamus R 0.8089 0.7835 0.0041

(S) Cingulum Post L* 0.7194 0.7591 0.0003 Other regions

Cingulum Post R* 0.7244 0.7636 0.0004 (L) Frontal Sup Orb R 0.8203 0.7989 0.0026

(S) Insula L 0.6813 0.7084 0.0017

(S) Insula R 0.6671 0.6948 0.0035

Supramarginal L 0.7596 0.7851 0.0023

Shown are data in patients with schizophrenia using the Taiwan (Dataset 1) and COBRE (Dataset 2) datasets; autism, using the NYU (Dataset 3) and UM (Dataset 4) datasets; and

ADHD, using the PK dataset (Dataset 5) when compared with matched controls (related to Fig. 4). We used FDR (q = 0.05) for correction, and those regions which could survive

Bonferroni correction (P = 0.05) are marked by an asterisk. The brain regions marked with ‘L’ or ‘S’ indicate that they are among the top 10 regions with the largest or smallest

variability in matched healthy controls. Vp and Vc denotes mean variability for patient and control groups, respectively. Sup = superior; Orb = orbital; L = left; R = right;

Post = posterior; Med = medial; Ant = anterior; Inf = inferior.

10 | BRAIN 2016: Page 10 of 15 J. Zhang et al.

 by guest on July 31, 2016
http://brain.oxfordjournals.org/

D
ow

nloaded from
 

http://brain.oxfordjournals.org/lookup/suppl/doi:10.1093/brain/aww143/-/DC1
http://brain.oxfordjournals.org/


temporal variability of functional brain networks derived

from the BOLD functional MRI may be driven ultimately

by changes in mental state. Further investigations are

needed to explore how different levels of vigilance/

mind-wandering can modulate BOLD/EEG activity and,

in turn, the temporal variability of functional brain

networks.

Disease-specific changes of variability

Resting state functional connectivity analysis has revealed

changes in the intrinsic topographical organization of the

brain in many psychiatric disorders, including schizophre-

nia, autism and ADHD (Castellanos et al., 2008; Kennedy

and Courchesne, 2008; Bassett et al., 2012; Whitfield-

Gabrieli and Ford, 2012). However, time-varying proper-

ties of brain networks in general mental disorders have

been less investigated (Damaraju et al., 2014; Schaefer

et al., 2014; Yu et al., 2015). Our work has demonstrated

disease-specific changes of variability in three mental dis-

orders, which may provide clues to the dynamics under-

lying neuropathological profiles of different psychiatric

disorders and thereby contribute to the development of dif-

ferential and diagnostic imaging.

Previous studies in schizophrenia have reported a hyper-

activated and concomitantly hyper-connected DMN

(Whitfield-Gabrieli et al., 2009), which may mirror inten-

sive self-reference and decreased attentional capacities in

patients (Whitfield-Gabrieli et al., 2009). In line with

these findings, patients with schizophrenia exhibited

decreased variability in those DMN regions associated

with increased activity and connectivity in this disorder.

Interaction between the DMN and task-positive networks

is related to working memory and switching between an

intrinsic and an extrinsic focus of attention (Weissman

et al., 2006; Whitfield-Gabrieli and Ford, 2012).

Therefore, decreased DMN variability is associated with

neurocognitive symptoms characteristic of schizophrenia,

e.g. an exaggerated focus on one’s own thoughts and a

blurring of the boundary between internal and external

worlds (Whitfield-Gabrieli et al., 2009). Schizophrenia

also demonstrates basic information processing deficits,

particularly sensory gating (Bender et al., 2007) associated

with the thalamus. Increased variability in patients with

schizophrenia in subcortical regions (such as thalamus,

Table 3 Correlation between temporal variability that is significantly changed in patients

Brain region Correlation coefficient P-value Score type

Schizophrenia

Sum score

Thalamus R �0.2332 0.0129 Overall score

Thalamus R �0.3347 0.0002 Positive score

Thalamus R �0.2513 0.0073 General score

Lingual R �0.3095 0.0009 Overall score

Lingual R �0.3327 0.0003 General score

Temporal Pole Sup L �0.2342 0.0103 Overall score

Temporal Pole Sup L �0.2363 0.0087 General score

Subscore

Thalamus R �0.3037 0.0010 Unusual thought content (g)

Thalamus R �0.3056 0.0007 Poor impulse control (g)

Lingual R �0.2953 0.0014 Poor impulse control (g)

Lingual R �0.2815 0.0023 Preoccupation (g)

Autism

Frontal Med Orb L 0.2970 0.0163 ADI R RRB TOTAL Ca

Rectus L 0.2739 0.0273 ADI R RRB TOTAL Ca

Cingulum Ant L 0.3119 0.0114 ADI R RRB TOTAL Ca

Angular L 0.3069 0.0098 ADOS STEREO BEHAVb

ADHD

Frontal Sup Orb R �0.2429 0.0177 Sum

Cingulum Post R 0.2598 0.011 Inattention

Frontal Sup Orb R �0.3201 0.0016 Impulsive

aADI R RRB TOTAL C: restricted, repetitive, and stereotyped patterns of behaviour subscore (C) total for autism diagnostic interview-revised.
bADOS STEREO BEHAV: stereotyped behaviours and restricted interest total subscore of the classic Autism Diagnostic Observation Schedule

(ADOS).

For schizophrenia, the results were obtained by integrating the Taiwan and COBRE datasets (FDR correction, q = 0.05) through meta-analysis. For

autism, only the NYU dataset is used as the UM dataset has incomplete symptom scores. For ADHD, only PKU dataset is used as NYU dataset has

incomplete scores. Sup = superior; Orb = orbital; L = left; R = right; Post = posterior; Med = medial; Ant = anterior; Inf = inferior.
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putamen, and pallidum; see Table 2) could therefore point

to desynchronized basic filter modules associated with an

inability to filter out irrelevant stimuli and a correspond-

ingly diminished ability to focus attention (Freedman et al.,

1987). This is consistent with a recent study that reported

hypo-connectivity of the putamen using a dynamic analysis

(Damaraju et al., 2014).

For autisms, a number of studies have found reduced

DMN connectivity and activity (Kennedy and

Courchesne, 2008) in resting state, which corresponds to

the high variability of DMN regions we have observed.

High variability in the DMN network suggests low func-

tionality, i.e. disruption of resting state default-mode

mediated cognition, which is mainly related to self-referen-

tial and theory of mind processing, inner speech, retrieving

and manipulating memories, and future plans (Greicius

et al., 2003; Kennedy et al., 2006; Garrity et al., 2007).

Therefore, self-referential thought may be reduced in

autism (Cherkassky et al., 2006) and directed more to-

wards obsessive interests and sensory-environment process-

ing than towards self-reflective activities (Crespi and

Badcock, 2008).

Temporal variability analysis in ADHD patients revealed

increased variability in regions of the DMN and concomi-

tantly decreased variability in subcortical regions. Previous

studies have also reported decreased DMN connectivity

and integration (Castellanos et al., 2008) in ADHD, as

explained by the ‘default-mode interference’ hypothesis

(Sonuga-Barke and Castellanos, 2007; Castellanos et al.,

2008). This theory suggests that the characteristic pattern

of variability in performance in ADHD could be based on a

dysfunctional synchronization in the DMN or its inter-

actions with ‘task-active’ regions, e.g. decreased anti-correl-

ations between the PCC and task-positive regions

(Castellanos et al., 2008). This is consistent with our find-

ing of high variability in DMN regions such as the poster-

ior cingulate in association with low functional

connectivity, and may reflect default mode interference

that contributes to attentional deficits in ADHD. In particu-

lar, the high variability associated with the posterior cingu-

late may be related its diminished volume (Carmona et al.,

2005) or decreased cortical thickness (Makris et al., 2007)

in ADHD, as well as in the precuneus.

Two interesting trends are worth noting. First, regions

demonstrating extreme variability (either highest or

lowest) in healthy controls are those most subject to

change in mental disorders. As is shown in Table 2, half

of the regions showing significant variability changes in the

three disorders are among the top 10% of regions that

have the highest or lowest variability in matched controls

(11/19 in schizophrenia, 3/8 in autism, and 4/10 in

ADHD). This indicates that regions at the two extremes

of the axis of variability are unstable and tend to be af-

fected by mental disorders. We find that regions with high-

est variability in controls (transmodal areas) always show a

decrease in variability in disorders while regions with

lowest variability in controls (primary sensory regions)

tend to show an increase in disorders, suggesting abnormal

functional integration tend to occur in primary sensory re-

gions and transmodal areas in mental disorders.

Second, the three disorders studied showed a disease-spe-

cific and partly opposing pattern of altered variability in

regions previously reported to be associated with symp-

toms. For example, schizophrenia and autism demonstrate

opposing trends in variability changes in DMN regions

compared with respective controls (Fig. 4 and Table 4),

with posterior DMN regions affected in schizophrenia

and anterior DMN regions affected in autism. This is con-

sistent with the idea that schizophrenia and autism may

represent contrasting pathologies (Crespi and Badcock,

2008). These disorders exhibit diametrically opposed

phenotypes, or patterns of social brain development, such

as social cognition, language, and behaviour, as well as

local/global processing. Social cognition is thought to be

underdeveloped in autistic-spectrum disorders, but hyper-

developed in the psychotic spectrum (Crespi and Badcock,

2008). In addition, an opposing trend was also observed

for variability changes in thalamus for schizophrenia and

ADHD (Fig. 4 and Table 4).

Finally, although both autism and ADHD demonstrate

changes in variability in DMN regions, the former involves

mainly medial frontal areas, while the latter includes the

Table 4 Disease-specific changes of variability for regions belonging to the DMN and subcortical

areas for schizophrenia, autism and ADHD

Schizophrenia Autism ADHD

DMN regions Vp5Vc Vp4Vc Vp4Vc

Hippocampus Angular Posterior- cingulate

Parahippocampus Rectus Angular

Inferior parietal gyrus Medial frontal gyrus

Inferior temporal gyrus Superior medial frontal gyrus

Rectus

Subcortical regions Vp4Vc Vp5Vc

Thalamus Thalamus

Putamen

‘Vp’ and ‘Vc’ denote variability of patients and healthy controls, respectively. Regions with significant changes are listed.
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posterior cingulate. Autism spectrum disorders are charac-

terized by deficits or inability to relate to other people and

understand others’ mental states (Assaf et al., 2010). These

theory of mind processes are supported by DMN activity,

especially by the medial prefrontal cortex (Assaf et al.,

2010). The higher variability in medial frontal regions iden-

tified in autism indicates the low functionality of these re-

gions, which may underlie the undermined theory of mind

processes in autisms. In comparison, posterior cingulate

dysfunction in ADHD is responsible for the disruption of

the DMN that leads to attentional lapses (Leech and Sharp,

2014)

Relationship between variability and
other measures and potential
applications

We found that the temporal variability defined here is

related to the concept of functional brain entropy proposed

in our previous research (Yao et al., 2013). Where a brain

region exhibits large functional entropy this indicates a

wider distribution of all its functional connections. In this

case the region tends to maintain relatively high functional

connectivity with many other regions (i.e. high network

degree) and therefore demonstrates low temporal variabil-

ity. Interestingly, regions showing a significant trend to-

wards increased entropy with age, such as hippocampus/

parahippocampal gyrus, olfactory cortex, and paracentral

lobule, all have high temporal variability. On the other

hand, regions demonstrating decreased entropy with age,

such as the insular, have low temporal variability.

Bassett et al. (2011) have shown that flexibility of the

brain is an important factor that predicts learning, and

found correlations between the ability for the brain to

learn and its flexibility (Bassett et al., 2011, 2013, 2015).

This suggests that the more often the brain switches con-

nectivity patterns (i.e. more variable), the more flexible it is.

Therefore, the temporal variability measure proposed in

our paper may be a suitable indicator of the flexibility of

a brain region, and could potentially be used to predict the

outcome of learning. Our measure of brain variability may

also have implications in rehabilitation, e.g. for patients

who have had a stroke or glioma, or general brain

injury. A brain region with more variability in global func-

tional connectivity profile after brain injuries suggests its

ability to participate in multiple communities, or neural

systems, therefore this region is more likely to restore its

function after rehabilitation or surgery. The variability

measure proposed here consequently is also expected to

reflect plasticity of the brain.

The influence of head movements

While it has been shown that head movements can influ-

ence estimates of functional connectivity (Satterthwaite

et al., 2013; Power et al., 2014), evidence also indicates

that head movement only explains a small fraction of the

variability in connectivity (Van Dijk et al., 2012). Motion-

associated differences in functional connectivity cannot be

fully attributed to motion artefacts, but rather also reflect

individual variability in functional organization (Zeng

et al., 2014). To evaluate the possible effect of head

motion on temporal variability, we calculated the correl-

ation between variability of a region and the head move-

ments (Supplementary Table 6). Of the six functional MRI

datasets (Datasets 1–6), only the patients in Dataset 4

(ADHD: NYU) show significant correlation between re-

gional variability and head movement (nine regions sur-

vived correction; FDR, q = 0.05). We also listed regions

with P5 0.01 (correlation between variability and head

movement) for other datasets in Supplementary Table 6,

and we found no consistent patterns across datasets.

These results suggest that the effect of head movement is

likely to be small and that the observed temporal variability

in brain networks we have observed cannot be attributed to

them, but may be driven by shifts in vigilance or mental

state (Allen et al., 2014). In the current study the NYU-

dataset for the ADHD, which did show correlations with

head movement was excluded from our analysis.
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